Типы впрыска топлива бензиновых двигателей. Системы впрыска топлива бензиновых двигателей

С непосредственным впрыском (также используется термин «прямой впрыск», или GDI) начали появляться на автомобилях не так давно. Однако технология набирает популярность и все чаще встречается на моторах новых автомобилей. Сегодня мы в общих чертах постараемся ответить, что такое технология непосредственного впрыска и стоит ли ее опасаться?

Для начала стоит отметить, что главной отличительной особенностью технологии является расположение форсунок, которые размещены непосредственно в головке блока цилиндров, соответственно, и впрыск под огромным давлением происходит напрямую в цилиндры, в отличие от давно зарекомендовавшей себя с лучшей стороны горючего во впускной коллектор.

Прямой впрыск впервые был испытан в серийном производстве японским автопроизводителем Mitsubishi. Эксплуатация показала, что среди плюсов главными преимуществами стали экономичность - от 10% до 20%, мощность - плюс 5% и экологичность. Основной минус - форсунки крайне требовательны к качеству топлива.

Стоит также отметить, что схожая система уже долгие десятилетия успешно устанавливается на . Однако именно на бензиновых моторах применение технологии было сопряжено с рядом трудностей, которые до сих пор не были окончательно решены.

В видео с YouTube-канала «Savagegeese» объясняется, что такое прямой впрыск и что может пойти не так в ходе эксплуатации автомобиля с данной системой. В дополнение к главным плюсам и минусам в видеоролике также объясняются тонкости профилактического обслуживания системы. Кроме того, в ролике затрагивается тема систем впрыска во впускные каналы, которые можно в изобилии наблюдать на более старых моторах, а также , которые используют оба метода впрыска горючего. Наглядно используя диаграммы Bosch, ведущий объясняет, как все это работает.


Чтоб узнать все нюансы, предлагаем посмотреть видео ниже (включение перевода субтитров поможет разобраться, если вы не очень хорошо знаете английский). Для тех, кому не слишком интересно смотреть, об основных плюсах и минусах непосредственного впрыска бензина можно прочитать ниже, после видео:

Итак, экологичность и экономичность - благие цели, но вот чем чревато использование современной технологии в вашем автомобиле:

Минусы

1. Очень сложная конструкция.

2. Отсюда вытекает вторая важная проблема. Поскольку молодая бензиновая технология подразумевает внесение серьезных изменений в конструкцию головок цилиндров двигателя, конструкцию самих форсунок и попутное изменение иных деталей мотора, к примеру ТНВД (топливный насос высокого давления), стоимость автомобилей с непосредственным впрыском топлива выше.

3. Производство самих частей системы питания также должно быть крайне точным. Форсунки развивают давление от 50 до 200 атмосфер.

Прибавьте к этому работу форсунки в непосредственной близости со сгораемым топливом и давлением внутри цилиндра и получите необходимость производства очень высокопрочных компонентов.

4. Поскольку сопла форсунок смотрят в камеру сгорания, все продукты сгорания бензина также осаждаются на них, постепенно забивая или выводя форсунку из строя. Это, пожалуй, самый серьезный минус использования конструкции GDI в российских реалиях.

5. Помимо этого необходимо очень тщательно следить за состоянием двигателя. Если в цилиндрах начинает происходить угар масла, продукты его термического распада достаточно быстро выведут из строя форсунку, засорят впускные клапаны, образовав на них несмываемый налет из отложений. Не стоит забывать, что классический впрыск с форсунками, расположенными во впускном коллекторе, хорошо очищает впускные клапаны, омывая их под давлением топливом.

6. Дорогой ремонт и необходимость профилактического обслуживания, которое тоже недешевое.


Помимо этого, в также объясняется, что при ненадлежащей эксплуатации на автомобилях с прямым впрыском могут наблюдаться загрязнение клапанов и ухудшение производительности, в особенности на турбированных двигателях.

Сейчас одной из основных задач перед конструкторскими бюро автопроизводителей является создание силовых установок, потребляющими как можно меньше топлива и выбрасывающих в атмосферу сниженное количество вредных веществ. При этом всего этого необходимо добиться с условием того, что влияние на рабочие параметры (мощность, крутящий момент) будет минимальным. То есть, необходимо сделать мотор экономичным, и в то же время мощным и тяговитым.

Для достижения результата переделкам и доработкам подвергаются практически все узлы и системы силового агрегата. Особенно это касается системы питания, ведь именно она отвечает за поступление топлива в цилиндры. Последней разработкой в данном направлении считается непосредственный впрыск топлива в камеры сгорания силовой установки, функционирующего на бензине.

Суть этой системы сводится к раздельной подаче компонентов горючей смеси – бензина и воздуха в цилиндры. То есть принцип ее функционирования очень похож на работу дизельных установок, где смесеобразование выполняется в камерах сгорания. Но у бензинового агрегата, на котором установлена система непосредственного впрыска, имеется ряд особенностей процесса закачки составляющих топливной смеси, его смешивания и сгорания.

Немного истории

Прямой впрыск – идея не новая, в истории имеется ряд примеров, где такая система использовалась. Первое массовое использование такого типа питания мотора было в авиации в средине прошлого века. Использовать ее пытались и на автотранспорте, однако широкого распространения она не получила. Систему тех годов можно рассматривать как некий прототип, поскольку она была полностью механической.

«Вторую жизнь» система непосредственного впрыска получила в средине 90-х годов 20 века. Первыми свои авто с установками, имеющими прямой впрыск, оснастили японцы. Разработанный в Mitsubishi агрегат получил обозначение GDI, которое является аббревиатурой «Gasoline Direct Injection», что обозначается как непосредственный впрыск топлива. Чуть позже Toyota создала свой мотор – D4.

Прямой впрыск топлива

Со временем моторы, в которых используется прямой впрыск, появились и у других производителей:

  • Концерн VAG – TSI, FSI, TFSI;
  • Mercedes-Benz – CGI;
  • Ford – EcoBoost;
  • GM – EcoTech;

Непосредственный впрыск не является отдельным, совершенно новым типом, и относится он к инжекторным системам подачи топлива. Но в отличие от предшественников, топливо у него впрыскивается под давлением сразу в цилиндры, а не как раньше – во впускной коллектор, где бензин перемешивался с воздухом перед подачей в камеры сгорания.

Конструктивные особенности и принцип работы

Прямой впрыск бензина по принципу очень схож с дизелем. В конструкции такой системы питания имеется дополнительный насос, после которого бензин уже под давлением поступает на форсунки, установленные в ГБЦ с распылителями, находящимися в камере сгорания. В требуемый момент форсунка подает топливо в цилиндр, куда через впускной коллектор уже закачан воздух.

Конструкция данной системы питания включает:

  • бак с установленным в нем топливоподкачивающим насосом;
  • магистрали низкого давления;
  • фильтрующие элементы очистки топлива;
  • насос, создающий повышенное давление с установленным регулятором (ТНВД);
  • магистрали высокого давления;
  • рампа с форсунками;
  • перепускной и предохранительный клапаны.

Схема топливной системы с непосредственный впрыском

Назначение части элементов, такие как бак с насосом и фильтра описаны в других статьях. Поэтому рассмотрим назначение ряда узлов, использующихся только в системе прямого впрыска.

Одним из основных элементов в данной системе является насос высокого давления. Он обеспечивает поступление топлива под значительным давлением в топливную рампу. Конструкция его у разных производителей отличается - одно или многоплунжерная. Привод же осуществляется от распределительных валов.

Также в систему включены клапана, которые предотвращают превышение давления топлива в системе выше критических значений. В целом же регулировка давления выполняется в нескольких местах – на выходе из насоса высокого давления регулятором, который входит в конструкцию ТНВД. Имеется перепускной клапан, контролирующий давление на входе в насос. Предохранительный же клапан следит за давлением в рампе.

Работает все так: топливоподкачивающий насос из бака по магистрали низкого давления подает бензин на ТНВД, при этом бензин проходит через фильтр тонкой очистки топлива, где удаляются крупные примеси.

Плунжерные пары насоса создают давление топлива, которое при разных режимах работы двигателя варьируется от 3 до 11 МПа. Уже под давлением топливо по магистралям высокого давления поступает в рампу, которая распределяется по его форсункам.

Работа форсунок контролируется электронным блоком управления. При этом он основывается на показаниях множества датчиков двигателя, после анализа данных, он производит управление форсунками – момента впрыска, количества топлива и способа распыла.

Если на ТНВД подается количество топлива больше необходимого, то срабатывает перепускной клапан, который часть топлива возвращает в бак. Также часть топлива сбрасывается в бак в случае превышения давления в рампе, но делается это уже предохранительным клапаном.

Прямой впрыск

Типы смесеобразования

Используя непосредственный впрыск топлива, инженерам удалось снизить расход бензина. И все достигнуто возможностью использования нескольких типов смесеобразования. То есть под определенные условия работы силовой установки подается свой тип смеси. Причем система контролирует и управляет не только подачей топлива, для обеспечения того или иного типа смесеобразования устанавливается еще и определенный режим подачи воздуха в цилиндры.

Всего же прямой впрыск способен обеспечить два основных типа смеси в цилиндрах:

  • Послойная;
  • Стехиометрическая гомогенная;

Это позволяет подобрать смесь, которая при определенной работе мотора, обеспечит наибольшее КПД.

Послойное смесеобразование позволяет двигателю функционировать на очень бедной смеси, в которой массовая часть воздуха больше топливной части в более чем 40 раз. То есть в цилиндры подается очень большое количество воздуха, а затем в нее добавляется немного топлива.

В нормальных условиях такая смесь от искры не загорается. Чтобы воспламенение произошло, конструкторы придали днищу поршня особую форму, обеспечивающую завихрение.

При таком смесеобразовании в камеру сгорания воздух, направленный заслонкой, поступает на большой скорости. В конце такта сжатия форсунка впрыскивает топливо, которое достигая днища поршня, за счет завихрения поднимается вверх к свече зажигания. В результате в зоне электродов смесь является обогащенной и легковоспламенимой, в то время как вокруг этой смеси находится воздух практически без частиц топлива. Поэтому такое смесеобразование и получило название послойного – внутри имеется слой с обогащенной смесью, поверх которого находится еще один слой, практически без топлива.

Данное смесеобразование обеспечивает минимальное потребление бензина, но и приготавливает такую смесь система лишь при равномерном движении, без резких ускорений.

Стехиометрическое смесеобразование – это изготовление топливной смеси в оптимальных пропорциях (14,7 части воздуха на 1 часть бензина), что обеспечивает максимальный выход мощности. Такая смесь уже воспламеняется легко, поэтому надобности в создании обогащенного слоя возле свечи не требуется, наоборот, для эффективного сгорания необходимо, чтобы бензин равномерно распределился в воздухе.

Поэтому топливо впрыскивается форсунками на также сжатия, и до воспламенения оно успевает хорошо перемещаться с воздухом.

Такое смесеобразование обеспечивается в цилиндрах во время ускорений, когда необходим максимальный выход мощности, а не экономичность.

Конструкторам пришлось также решать вопрос с переходом двигателя с бедной смеси на обогащенную во время резких ускорений. Чтобы не произошло детонационного сгорания, во время перехода используется двойной впрыск.

Первая закачка топлива выполняется на такте впуска, при этом топливо выступает в качестве охладителя стенок камеры сгорания, что исключает детонацию. Вторая порция бензина подается уже на конце такта сжатия.

Система непосредственного впрыска топлива благодаря применению сразу нескольких типов смесеобразования, позволяет неплохо экономить топливо без особого влияния на мощностные показатели.

Во время ускорений двигатель работает на обычной смеси, а после набора скорости, когда режим движения размеренный и без резких перепадов, силовая установка переходит на очень обедненную смесь, тем самым экономя топливо.

В этом и кроется основное достоинство такой системы питания. Но есть у нее и немаловажный недостаток. В топливном насосе высокого давления, а также в форсунках используются прецизионные пары с высокой степенью обработки. Именно они и являются слабым местом, поскольку эти пары очень чувствительны к качеству бензина. Наличие сторонних примесей, серы и воды способно вывести ТНВД и форсунки из строя. Дополнительно, бензин обладает очень слабыми смазывающими свойствами. Поэтому износ прецизионных пар выше, чем у того же дизельного мотора.

К тому же сама система непосредственной подачи топлива конструктивно более сложная и дорогостоящая, чем та же система раздельного впрыска.

Новые разработки

Конструкторы же на достигнутом не останавливаются. Своеобразную доработку прямого впрыска сделали в концерне VAG в силовом агрегате TFSI. У него систему питания объединили с турбокомпрессором.

Интересное решение предложила компания Orbital. Они разработали особую форсунку, которая помимо топлива впрыскивает в цилиндры еще и сжатый воздух, подающийся от дополнительного компрессора. Такая топливовоздушная смесь обладает отличной воспламеняемостью и хорошо сгорает. Но это пока только разработка и найдет ли она применение на авто, пока неизвестно.

В целом же, непосредственный впрыск сейчас является самой лучшей системой питания в плане экономичности и экологичности, хоть и имеются у нее свои недостатки.

Autoleek

» Система впрыска топлива — схемы и принцип действия

Разные системы и типы впрыска топлива.

Топливный инжектор — это не что иное, как автоматический контролируемый клапан. Топливные форсунки являются частью механической системы, которая впрыскивает топливо в камеры сгорания через определенный интервал. Топливные инжекторы способны открываться и закрываться много раз в течение одной секунды. В последние годы, использованные ранее для доставки топлива карбюраторы, были практически заменены инжекторами.

  • Дроссельно-заслонный инжектор.

Корпус дроссельной заслонки является самым простым типом впрыска. Как и карбюраторы, дроссельно-заслонный инжектор расположен на верхней части двигателя. Такие инжекторы очень сильно напоминают карбюраторы, кроме их работы. Как и карбюраторы, они не имеют миску топлива или жиклеры. В том виде форсунки передают его непосредственно в камеры сгорания.

  • Система непрерывного впрыска.

Как и предполагает название, существует непрерывный поток топлива из форсунок. Вход его в цилиндры или трубки контролируется с помощью впускных клапанов. Существует непрерывный поток топлива при переменной ставке в непрерывной инъекции.

  • Центральный порт впрыска (ИПЦ).

Эта схема использует особый тип арматуры, так называемые ‘тарелки клапанов’. Тарелками клапанов являются клапаны, используемые для управления входа и выброса топлива к цилиндру. Это распыляет горючее на каждый прием с помощью трубки, прикрепленной к центральному инжектору.

  • Мульти-порт или многоточечный впрыск топлива — схема работы.

Один из более продвинутых схем впрыска топлива в наше время называется ‘многоточечный или мульти-порт впрыска’. Это динамический тип впрыска, в котором содержится отдельная форсунка для каждого цилиндра. В мульти-порт системе впрыска топлива все форсунки распыляют его одновременно без каких-либо задержек. Одновременный многоточечный впрыск — это одна из самых продвинутых механических настроек, которая позволяет горючему в цилиндре мгновенно воспламеняться. Следовательно, с многоточечным впрыском топлива водитель получит быстрый отклик.

Современные схемы впрыска топлива являются довольно сложными компьютеризированными механическими системами, которые сводятся не только к топливным форсункам. Весь процесс контролируется с помощью компьютера. И различные детали реагируют в соответствии с данными инструкциями. Существует ряд датчиков, которые адаптируется с помощью посыла важной информации компьютером. Существуют различные датчики, которые контролируют расход топлива, уровень кислорода и другие.

Хотя эта схема топливной системы более сложная, но работа ее разных частей очень уточненная. Она помогает контролировать уровень кислорода и расход топлива, что поможет избежать ненужного расхода горючего в двигателе. Топливная форсунка дает вашему авто потенциал для выполнения задач с высокой степенью точности.

Для разных топливных систем зачастую приходит необходимость для промывки специальным оборудованием .

Сущность схемы непосредственного впрыска в камеру сгорания

Для человека, который не обладает техническим складом ума, разобраться в данном вопросе – задача чрезвычайно сложная. Но все же знание отличий данной модификации двигателя от инжекторной или карбюраторной необходимо. Впервые двигатели с непосредственным впрыском применялись в модели Mercedes-Benz 1954 года выпуска, но большую популярность данная модификация приобрела благодаря компании Mitsubishi под названием Gasoline Direct Injection.

И с тех пор данная конструкция применяется многими известными брендами, такими как:

  • Infinity,
  • Ford,
  • General Motors,
  • Hyundai,
  • Mercedes-Benz,
  • Mazda.

При этом каждая из фирм использует свое название для рассматриваемой системы. Но принцип действия остается одним и тем же.

Росту популярности системы впрыска топлива способствуют показатели ее экономичности и экологичности, так как при ее использовании значительно сокращается выброс вредных веществ в атмосферу.

Основные особенности системы впрыска топлива

Основной принцип работы данной системы состоит в том, что топливо непосредственно впрыскивается в цилиндры двигателя. Для работы системы обычно необходимо наличие двух топливных насосов:

  1. первый располагается в баке с бензином,
  2. второй – на двигателе.

Причем второй является насосом высокого давления, иногда выдающим более 100 бар. Это необходимое условие работы, так как топливо поступает в цилиндр на такте сжатия. Высокое давление является основной причиной особого строения форсунок, которые выполняются в виде уплотнительных тефлоновых колец.

Данная топливная система, в отличие от системы с обычным впрыском, является системой с внутренним смесеобразованием с послойным или однородным образованием топливовоздушной массы. Способ смесеобразования изменяется с изменением нагрузки двигателя. Разберемся в работе двигателя при послойном и однородном образовании топливовоздушной смеси.

Работа при послойном образовании топливной смеси

Из-за особенностей строения коллектора (наличия заслонок, которые закрывают низы) перекрывается доступ к низу. На такте впуска воздух поступает в верхнюю часть цилиндра, после некоторого вращения коленчатого вала на такте сжатия происходит впрыск топлива, который и требует большого давления насоса. Далее полученная смесь сносится при помощи воздушного вихря на свечу. В момент подачи искры бензин уже будет хорошо перемешан с воздухом, что способствует качественному сгоранию. При этом воздушная прослойка создает своеобразную оболочку, которая снижает потери и повышает коэффициент полезного действия, тем самым уменьшая расход топлива.

Следует отметить, что работа при послойном впрыске топлива является наиболее перспективным направлением, так как в этом режиме можно достичь наиболее оптимального сгорания топлива.

Однородное образование топливной смеси

В данном случае происходящие процессы понять еще легче. Топливо и необходимый для сгорания воздух почти одновременно попадают в цилиндр двигателя на такте впуска. Еще до достижения поршнем верхней мертвой точки топливовоздушная смесь находится в смешанном состоянии. Образование высококачественной смеси происходит благодаря высокому давлению впрыска. Система переключается с одного режима работы на другой благодаря анализу поступающих данных. Это в результате и приводит к повышению экономичности двигателя.

Основные недостатки впрыска топлива

Все преимущества системы с непосредственным впрыском топлива достигаются только при использовании бензина, качество которого соответствует определенным критериям. В них и следует разобраться. Требования к октановому числу у системы больших особенностей не имеют. Хорошее охлаждение топливовоздушной смеси достигается и при использовании бензинов, имеющих октановые числа от 92 до 95.

Наиболее жесткие требования выдвигаются именно к очистке бензина, его составу, содержанию свинца, серы и грязи. Серы быть вообще не должно, так как ее наличие приведет к скорому износу топливной аппаратуры и выходу из строя электроники. К числу недостатков также следует отнести увеличение стоимости системы. Это вызвано усложнением конструкции, которое в свою очередь приводит к увеличению себестоимости компонентов.

Итоги

Анализируя вышеприведенную информацию, можно с уверенностью сказать, что система с непосредственным впрыском топлива в камеру сгорания является более перспективной и современной, чем впрыск с распределением. Она позволяет существенно повышать экономичность двигателя за счет высокого качества топливовоздушной смеси. Основным недостатком системы является наличие высоких требований к качеству бензина, большая стоимость ремонта и обслуживания. А при использовании бензина низкого качества потребность в более частом ремонте и обслуживании сильно возрастает.

Где находится клапан ЕГР — чистка или как заглушить EGR Роторный дизель — конструкция двигателя
Тормозная система автомобиля — ремонт или замена Дизель не заводится, неисправности и причины
Система охлаждения двигателя автомобиля, принцип действия, неисправности 2.0 fsi система впрыска – что это такое, история, преимущества

В случае с системой впрыска топлива Ваш двигатель все ещё ​сосёт, но вместо того, чтобы полагаться только на всасываемое количество топлива, система впрыска топлива стреляет точно правильное количество топлива в камеру сгорания. Системы впрыска топлива прошли уже несколько ступеней эволюции, в них была добавлена электроника - это, пожалуй, было самым большим шагом в развитии этой системы. Но идея таких систем осталась та же: электрически активируемый клапан (инжектор) распыляет отмеренное количество топлива в двигатель. На самом деле основное различие между карбюратором и инжектором именно в электронном управлении ЭБУ - именно бортовой компьютер подаёт точно нужное количество топлива в камеру сгорания двигателя.

Давайте посмотрим, как работает система впрыска топлива и инжектор в частности.

Так выглядит система впрыска топлива

Если сердце автомобиля - это его двигатель, то его мозг - это блок управления двигателем (ЭБУ). Он оптимизирует работу двигателя с помощью датчиков, чтобы решить, как управлять некоторыми приводами в двигателе. Прежде всего, компьютер отвечает за 4 основные задачи:

  1. управляет топливной смесью,
  2. контролирует обороты холостого хода ,
  3. несёт ответственность за угол опережения зажигания,
  4. управляет фазами газораспределения.

Прежде чем мы поговорим о том, как ЭБУ осуществляет свои задачи, давайте о самом главном - проследим путь бензина от бензобака до двигателя - это и есть работа системы впрыска топлива. Первоначально после того, как капля бензина покидает стенки бензобака, она всасывается с помощью электрического топливного насоса в двигатель. Электрический топливный насос, как правило, состоит из непосредственно насоса, а также фильтра и передающего устройства.

Регулятор давления топлива в конце топливной направляющей с вакуумным питанием гарантирует, что давление топлива будет постоянным по отношению к давлению всасывания. Для бензинового двигателя давление топлива, как правило, составляет порядка 2-3,5 атмосферы (200-350 кПа, 35-50 PSI (фунтов на квадратный дюйм)). Топливные форсунки инжектора подключены к двигателю, но их клапаны остаются закрытыми до тех пор, пока ЭБУ не разрешит отправить топливо в цилиндры.

Но что же происходит, когда двигателю требуется топливо? Здесь в работу вступает инжектор . Обычно инжекторы имеют два контакта: один вывод подключен к аккумулятору через реле зажигания, а другой контакт проходит в ЭБУ. ЭБУ посылает пульсирующие сигналы в инжектор. За счёт магнита, на который и подаются такие пульсирующие сигналы, открывается клапан инжектора, и в его сопло подаётся некоторое количество топлива. Поскольку в инжекторе очень высокое давление (значение приведено выше), открывшийся клапан направляет топливо с высокой скоростью в сопло распылителя инжектора. Продолжительность, с которой открыт клапан инжектора, влияет на то, какое количество топлива подаётся в цилиндр, а продолжительность эта, соответственно зависит от ширины импульса (т.е. от того, сколько времени ЭБУ посылает сигнал к инжектору).

Когда клапан открывается, топливная форсунка передаёт топливо через распылительный наконечник, который, распыляя, превращает жидкое топливо в туман, непосредственно в цилиндр. Такая система называется системой с непосредственным впрыском . Но распылённое топливо может подаваться не сразу в цилиндры, а сначала в впускные коллекторы.


Как работает инжектор

Но как ЭБУ определяет, сколько на данный момент топлива нужно подать в двигатель? Когда водитель нажимает педаль акселератора, то на самом деле он открывает дроссельную заслонку на величину нажима педали, через которую в двигатель подаётся воздух. Таким образом, мы с уверенностью можем назвать педаль газа "регулятором подачи воздуха" в двигатель. Так вот, компьютер автомобиля руководствуется в том числе величиной открытия дроссельной заслонки, но не ограничивается этим показателем - он считывает информацию с множества датчиков, и давайте узнаем о них всех!

Датчик массового расхода воздуха

Перво-наперво датчик массового расхода воздуха (MAF) определяет, сколько воздуха входит в корпус дроссельной заслонки и посылает эту информацию в ЭБУ. ЭБУ использует эту информацию, чтобы решить, сколько топлива впрыснуть в цилиндры, чтобы держать смесь в идеальных пропорциях.

Датчик положения дроссельной заслонки

Компьютер постоянно использует этот датчик, чтобы проверить положение дроссельной заслонки и узнать таким образом, сколько воздуха проходит через воздухозаборник для того, чтобы регулировать импульс, отправленный к форсункам, гарантируя, что соответствующее воздуху количество топлива входит в систему.

Кислородный датчик

Кроме того, ЭБУ использует датчик O2, чтобы выяснить, сколько кислорода содержится в выхлопных газах автомобиля. Содержание кислорода в выхлопных газах обеспечивает индикацию того, насколько хорошо топливо сгорает. Используя связанные данные от двух датчиков: кислородного и массового расхода воздуха, ЭБУ также контролирует насыщенность топливо-воздушной смеси, подаваемой в камеру сгорания цилиндров двигателя.

Датчик положения коленвала

Это, пожалуй, главный датчик системы впрыска топлива - именно от него ЭБУ узнаёт о количестве оборотов двигателя в данный момент времени и корректирует количество подаваемого топлива в зависимости от числа оборотов и, конечно же, положения педали газа.

Это три основных датчика, которые прямо и динамически влияют на количество подаваемого в инжектор и в последующем в двигатель топлива. Но есть ещё ряд датчиков:

  • Датчик напряжения в электрической сети машины - нужен для того, чтобы ЭБУ понимал, насколько разряжен аккумулятор и требуется ли повысить обороты, чтобы зарядить его.
  • Датчик температуры охлаждающей жидкости - ЭБУ повышает количество оборотов, если двигатель холодный и наоборот, если двигатель прогрелся.

В современных автомобилях в бензиновых силовых установках принцип работы системы питания схож с тем, который применяется на дизелях. В этих моторах она разделена на две – впуска и впрыска. Первая обеспечивает подачу воздуха, а вторая – топлива. Но из-за конструктивных и эксплуатационных особенностей функционирование впрыска существенно отличается от применяемого на дизелях.

Отметим, что разница в системах впрыска дизельных и бензиновых моторов все больше стирается. Для получения лучших качеств конструкторы заимствуют конструктивные решения и применяют их на разных видах систем питания.

Устройство и принцип работы инжекторной системы впрыска

Второе название систем впрыска бензиновых моторов – инжекторная . Основная ее особенность заключается в точной дозировке топлива. Достигается это путем использования в конструкции форсунок. Устройство инжекторного впрыска двигателя включает в себя две составляющие – исполнительную и управляющую.

В задачу исполнительной части входит подача бензина и его распыление. Она включает в себя не так уж и много составных элементов:

  1. Насос (электрический).
  2. Фильтрующий элемент (тонкой очистки).
  3. Топливопроводы.
  4. Рампа.
  5. Форсунки.

Но это только основные компоненты. Исполнительная составляющая может в себя включать еще ряд дополнительных узлов и деталей – регулятор давления, систему слива излишков бензина, адсорбер.

В задачу указанных элементов входит подготовка топлива и обеспечение его поступления к форсункам, которыми и осуществляется их впрыскивание.

Принцип работы исполнительной составляющей прост. При повороте ключа зажигания (на некоторых моделях – при открытии водительской двери) включается электрический насос, который качает бензин и заполняет им остальные элементы. Топливо проходит очистку и по топливопроводам поступает в рампу, которая соединяет собой форсунки. За счет насоса топливо во всей системе находится под давлением. Но его значение ниже, чем на дизелях.

Открытие форсунок осуществляется за счет электрических импульсов, подаваемых с управляющей части. Эта составляющая системы впрыска топлива состоит из блока управления и целого комплекта следящих устройств – датчиков.

Эти датчики отслеживают показатели и параметры работы – скорость вращения коленчатого вала, количества подаваемого воздуха, температуры ОЖ, положения дросселя. Показания поступают на блок управления (ЭБУ). Он эту информацию сравнивает с данными, занесенными в память, на основе чего определяется длина электрических импульсов, подаваемых на форсунки.

Электроника, используемая в управляющей части системы впрыска топлива, нужна, чтобы высчитать время, на которое должна открыться форсунка при том или ином режиме работы силового агрегата.

Виды инжекторов

Но отметим, что это общая конструкция системы подачи бензинового мотора. Но инжекторов разработано несколько, и каждая из них обладает своими конструктивными и рабочими особенностями.

На автомобилях применяются системы впрыска двигателя:

  • центрального;
  • распределенного;
  • непосредственного.

Центральный впрыск считается первым инжектором. Его особенность заключается в использовании только одной форсунки, которая впрыскивала бензин во впускной коллектор одновременно для всех цилиндров. Изначально он был механическим и никакой электроники в конструкции не использовалось. Если рассмотреть устройство механического инжектора, то она схожа с карбюраторной системой, с единственной разницей, что вместо карбюратора использовалась форсунка с механическим приводом. Со временем центральную подачу сделали электронной.

Сейчас этот тип не используется из-за ряда недостатков, основной из которых — неравномерность распределения топлива по цилиндрам.

Распределенный впрыск на данный момент является самой распространенной системой. Конструкция этого типа инжектора расписана выше. Ее особенность заключается в том, что топливо для каждого цилиндра подает своя форсунка.

В конструкции этого вида форсунки устанавливаются во впускном коллекторе и располагаются рядом с ГБЦ. Распределение топлива по цилиндрам дает возможность обеспечить точную дозировку бензина.

Непосредственный впрыск сейчас является самым совершенным типом подачи бензина. В предыдущих двух типах бензин подавался в проходящий поток воздуха, и смесеобразование начинало осуществляться еще во впускном коллекторе. Этот же инжектора по конструкции копирует дизельную систему впрыска.

В инжекторе с непосредственной подачей распылители форсунок располагаются в камере сгорания. В результате компоненты топливовоздушной смеси здесь запускаются в цилиндры по отдельности, и уже в самой камере они смешиваются.

Особенность работы этого инжектора заключается в том, что для впрыскивания бензина требуется высокие показатели давления топлива. И его создание обеспечивает еще один узел, добавленный в устройство исполнительной части – насос высокого давления.

Системы питания дизельных двигателей

И дизельные системы модернизируются. Если раннее она была механической, то сейчас и дизеля оснащаются электронным управлением. В ней используются те же датчики и блок управления, что и в бензиновом моторе.

Сейчас на автомобилях применяется три типа дизельных впрысков:

  1. С распределительным ТНВД.
  2. Common Rail.
  3. Насос-форсунки.

Как и в бензиновых моторах, конструкция дизельного впрыска состоит из исполнительной и управляющей частей.

Многие элементы исполнительной части те же, что и у инжекторов – бак, топливопроводы, фильтрующие элементы. Но есть и узлы, которые не встречаются на бензиновых моторах – топливоподкачивающий насос, ТНВД, магистрали для транспортировки топлива под высоким давлением.

В механических системах дизелей применялись рядные ТНВД, у которых давление топлива для каждой форсунки создавала своя отдельная плунжерная пара. Такие насосы отличались высокой надежностью, но были громоздкими. Момент впрыска и количество впрыскиваемого дизтоплива регулировалось насосом.

В двигателях, оснащаемых распределительным ТНВД, в конструкции насоса используется только одна плунжерная пара, которая качает топливо для форсунок. Этот узел отличается компактными размерами, но ресурс его ниже, чем рядных. Применяется такая система только на легковом автотранспорте.

Common Rail считается одной из самых эффективных дизельных систем впрыска двигателя. Общая концепция ее во многом позаимствована у инжектора с раздельной подачей.

В таком дизеле моментом начала подачи и количеством топлива «заведует» электронная составляющая. Задача насоса высокого давления — только нагнетание дизтоплива и создание высокого давления. Причем дизтопливо подается не сразу на форсунки, а в рампу, соединяющую форсунки.

Насос-форсунки – еще один тип дизельного впрыска. В этой конструкции ТНВД отсутствует, а плунжерные пары, создающие давление дизтоплива, входят в устройство форсунок. Такое конструктивное решение позволяет создавать самые высокие значения давления топлива среди существующих разновидностей впрыска на дизельных агрегатах.

Напоследок отметим, что здесь приводится информация по видам впрыска двигателей обобщенно. Чтобы разобраться с конструкцией и особенностями указанных типов, их рассматривают по отдельности.

Видео: Управление системой впрыска топлива

Уровень масла