Расчет турбины турбореактивного двухконтурного двигателя на базе АЛ–31Ф. Безотрывный переходный канал между турбиной высокого давления и турбиной низкого давления двухконтурного авиационного двигателя Проектирование оси турбины низкого давления авиадвигат

На сегодняшний день, авиация практически на 100% состоит из машин, которые используют газотурбинный тип силовой установки. Иначе говоря – газотурбинные двигатели. Однако, несмотря на всю возрастающую популярность авиаперелетов сейчас, мало кто знает каким образом работает тот жужжащий и свистящий контейнер, который висит под крылом того или иного авиалайнера.

Принцип работы газотурбинного двигателя.

Газотурбинный двигатель, как и поршневой двигатель на любом автомобиле, относится к двигателям внутреннего сгорания. Они оба преобразуют химическую энергию топлива в тепловую, путем сжигания, а после - в полезную, механическую. Однако то, как это происходит, несколько отличается. В обоих двигателях происходит 4 основных процесса – это: забор, сжатие, расширение, выхлоп. Т.е. в любом случае в двигатель сначала входит воздух (с атмосферы) и топливо (из баков), далее воздух сжимается и в него впрыскивается топливо, после чего смесь воспламеняется, из-за чего значительно расширяется, и в итоге выбрасывается в атмосферу. Из всех этих действий выдает энергию лишь расширение, все остальные необходимы для обеспечения этого действия.

А теперь в чем разница. В газотурбинных двигателях все эти процессы происходят постоянно и одновременно, но в разных частях двигателя, а в поршневом – в одном месте, но в разный момент времени и по очереди. К тому же, чем более сжат воздух, тем большую энергию можно получить при сгорании, а на сегодняшний день степень сжатия газотурбинных двигателей уже достигла 35-40:1, т.е. в процессе прохода через двигатель воздух уменьшается в объеме, а соответственно увеличивает свое давление в 35-40 раз. Для сравнения в поршневых двигателях этот показатель не превышает 8-9:1, в самых современных и совершенных образцах. Соответственно имея равный вес и размеры газотурбинный двигатель гораздо более мощный, да и коэффициент полезного действия у него выше. Именно этим и обусловлено такое широкое применения газотурбинных двигателей в авиации в наши дни.

А теперь подробней о конструкции. Четыре вышеперечисленных процесса происходят в двигателе, который изображен на упрощенной схеме под номерами:

  • забор воздуха – 1 (воздухозаборник)
  • сжатие – 2 (компрессор)
  • смешивание и воспламенение – 3 (камера сгорания)
  • выхлоп – 5 (выхлопное сопло)
  • Загадочная секция под номером 4 называется турбиной. Это неотъемлемая часть любого газотурбинного двигателя, ее предназначение – получение энергии от газов, которые выходят после камеры сгорания на огромных скоростях, и находится она на одном валу с компрессором (2), который и приводит в действие.

Таким образом получается замкнутый цикл. Воздух входит в двигатель, сжимается, смешивается с горючим, воспламеняется, направляется на лопатки турбины, которые снимают до 80% мощности газов для вращения компрессора, все что осталось и обуславливает итоговую мощность двигателя, которая может быть использована разными способами.

В зависимости от способа дальнейшего использования этой энергии газотурбинные двигатели подразделяются на:

  • турбореактивные
  • турбовинтовые
  • турбовентиляторные
  • турбовальные

Двигатель, изображенный на схеме выше, является турбореактивным . Можно сказать «чистым» газотурбинным, ведь газы после прохождения турбины, которая вращает компрессор, выходят из двигателя через выхлопное сопло на огромной скорости и таким образом толкают самолет вперед. Такие двигатели сейчас используются в основном на высокоскоростных боевых самолетах.

Турбовинтовые двигатели отличаются от турбореактивных тем, что имеют дополнительную секцию турбины, которая еще называется турбиной низкого давления, состоящую из одного или нескольких рядов лопаток, которые отбирают оставшуюся после турбины компрессора энергию у газов и таким образом вращает воздушный винт, который может находится как спереди так и сзади двигателя. После второй секции турбины, отработанные газы выходят фактически уже самотеком, не имея практически никакой энергии, поэтому для их вывода используются просто выхлопные трубы. Подобные двигатели используются на низкоскоростных, маловысотных самолетах.

Турбовентиляторные двигатели имеют схожую схему с турбовинтовыми, только вторая секция турбины отбирает не всю энергию у выходящих газов, поэтому такие двигатели также имеют выхлопное сопло. Но основное отличие состоит в том, что турбина низкого давления приводит в действия вентилятор, который закрыт в кожух. Потому такой двигатель еще называется двуконтурным, ведь воздух проходит через внутренний контур (сам двигатель) и внешний, который необходим лишь для направления воздушной струи, которая толкает двигатель вперед. Потому они и имеют довольно «пухлую» форму. Именно такие двигатели применяются на большинстве современных авиалайнеров, поскольку являются наиболее экономичными на скоростях, приближающихся к скорости звука и эффективными при полетах на высотах выше 7000-8000м и вплоть до 12000-13000м.

Турбовальные двигатели практически идентичны по конструкции с турбовинтовыми, за исключением того, что вал, который соединен с турбиной низкого давления, выходит из двигателя и может приводить в действие абсолютно что угодно. Такие двигатели используются в вертолетах, где два-три двигателя приводят в действие единственный несущий винт и компенсирующий хвостовой пропеллер. Подобные силовые установки сейчас имеют даже танки – Т-80 и американский «Абрамс».

Газотурбинные двигатели имеют классификацию также по другим при знакам:

  • по типу входного устройства (регулируемое, нерегулируемое)
  • по типу компрессора (осевой, центробежный, осецентробежный)
  • по типу воздушно-газового тракта (прямоточный, петлевой)
  • по типу турбин (число ступеней, число роторов и др.)
  • по типу реактивного сопла (регулируемое, нерегулируемое) и др.

Турбореактивный двигатель с осевым компрессором получил широкое применение. При работающем двигателе идет непрерывный процесс. Воздух проходит через диффузор, притормаживается и попадает в компрессор. Затем он поступает в камеру сгорания. В камеру через форсунки подается также топливо, смесь сжигается, продукты сгорания перемещаются через турбину. Продукты сгорания в лопатках турбины расширяются и приводят ее во вращение. Далее газы из турбины с уменьшенным давлением поступают в реактивное сопло и с огромной скоростью вырываются наружу, создавая тягу. Максимальная температура имеет место и на воде камеры сгорания.

Компрессор и турбина расположены на одном валу. Для охлаждения продуктов сгорания подается холодный воздух. В современных реактивных двигателях рабочая температура может превышать температуру плавления сплавов рабочих лопаток примерно на 1000 °С. Система охлаждения деталей турбины и выбор жаропрочных и жаростойких деталей двигателя - одни из главных проблем при конструировании реактивных двигателей всех типов, в том числе и турбореактивных.

Особенностью турбореактивных двигателей с центробежным компрессором является конструкция компрессоров. Принцип работы подобных двигателей аналогичен двигателям с осевым компрессором.

Газотурбинный двигатель. Видео.

Полезные статьи по теме.

В 2006 году руководством Пермского моторостроительного комплекса и ОАО «Территориальная генерирующая компания № 9» (Пермский филиал) подписан договор на изготовление и поставку газотурбинной электростанции ГТЭС-16ПА на базе ГТЭ-16ПА с двигателем ПС-90ЭУ-16А.

Об основных отличиях нового двигателя от существующего ПС-90АГП-2 мы попросили рассказать заместителя генерального конструктора-главного конструктора энергетических газотурбинных установок и электростанций ОАО «Авиадвигатель» Даниила СУЛИМОВА.

Основным отличием установки ГТЭ-16ПА от существующей ГТУ-16ПЭР является применение силовой турбины с частотой вращения 3000 об./мин (вместо 5300 об./мин). Уменьшение частоты вращения дает возможность отказаться от дорогостоящего редуктора и повысить надежность газотурбинной установки в целом.

Технические характеристики двигателей ГТУ-16ПЭР и ГТЭ-16ПА (в условиях ISO)

Оптимизация основных параметров силовой турбины

Базовые параметры свободной турбины (СТ): диаметр, проточная часть, количество ступеней, аэродинамическая эффективность - оптимизированы с целью минимизации прямых эксплуатационных расходов.

Эксплуатационные расходы включают затраты на приобретение СТ и расходы за определенный (приемлемый для заказчика в качестве срока окупаемости) период эксплуатации. Выбор вполне обозримого для заказчика (не более 3 лет) срока окупаемости позволил реализовать экономически обоснованную конструкцию.

Выбор оптимального варианта свободной турбины для конкретного применения в составе ГТЭ-16ПА производился в системе двигателя в целом на основе сравнения прямых эксплуатационных расходов для каждого варианта.

С использованием одномерного моделирования СТ по среднему диаметру определялся достижимый уровень аэродинамической эффективности СТ для дискретно заданного количества ступеней. Выбиралась оптимальная для данного варианта проточная часть. Количество лопаток, учитывая их значительное влияние на себестоимость, выбиралось из условия обеспечения коэффициента аэродинамической нагрузки Цвайфеля равным единице.

На основе выбранной проточной части оценивалась масса СТ и производственная себестоимость. Затем проводилось сравнение вариантов турбины в системе двигателя по прямым эксплуатационным расходам.

При выборе количества ступеней для СТ учитывается изменение кпд, затрат на приобретение и эксплуатацию (стоимость топлива).

Стоимость приобретения равномерно возрастает с ростом себестоимости при увеличении количества ступеней. Подобным же образом растет и реализуемый кпд - как следствие снижения аэродинамической нагрузки на ступень. Затраты на эксплуатацию (топливная составляющая) падают с ростом кпд. Однако суммарные затраты имеют четкий минимум при четырех ступенях в силовой турбине.

При расчетах учитывался как опыт собственных разработок, так и опыт других фирм (реализованный в конкретных конструкциях), который позволил обеспечить объективность оценок.

В окончательной конструкции за счет увеличения нагрузки на ступень и снижение кпд СТ от максимально достижимой величины примерно на 1% удалось снизить суммарные затраты заказчика почти на 20%. Это было достигнуто за счет снижения себестоимости и цены турбины на 26% относительно варианта с максимальным кпд.

Аэродинамическое проектирование СТ

Высокая аэродинамическая эффективность новой СТ при достаточно высокой нагрузке достигнута за счет использования опыта ОАО «Авиадвигатель» в разработке турбин низкого давления и силовых турбин, а также применения многоступенчатых пространственных аэродинамических моделей, использующих уравнения Эйлера (без учета вязкости) и Навье-Стокса (учитывающих вязкость).

Сравнение параметров силовых турбин ГТЭ-16ПА и ТНД Rolls-Royce

Сравнение параметров СТ ГТЭ-16ПА и наиболее современных ТНД Rolls-Royce семейства Trent (диаграмма Смита) показывает, что по уровню угла поворота потока в лопатках (примерно 1050) новая СТ находится на уровне турбин Rolls-Royce. Отсутствие жесткого ограничения по массе, свойственного авиационным конструкциям, позволило несколько снизить коэффициент нагрузки dH/U2 за счет увеличения диаметра и окружной скорости. Величина выходной скорости (свойственная наземным конструкциям) позволила уменьшить относительную осевую скорость. В целом, потенциал спроектированной СТ для реализации кпд находится на уровне, характерном для ступеней семейства Trent.

Особенностью аэродинамики спроектированной СТ является также обеспечение оптимального значения кпд турбины на режимах частичной мощности, характерных для эксплуатации в базовом режиме.

При сохранении частоты вращения изменение (снижение) нагрузки на СТ приводит к возрастанию углов атаки (отклонению направления течения газа на входе в лопатки от расчетной величины) на входе в лопаточные венцы. Появляются отрицательные углы атаки, наиболее значительные в последних ступенях турбины.

Проектирование лопаточных венцов СТ с высокой устойчивостью к изменению углов атаки обеспечено специальным профилированием венцов с дополнительной проверкой стабильности аэродинамических потерь (по 2D/3D аэродинамическим моделям Навье-Стокса) при больших углах потока на входе.

Аналитические характеристики новой СТ показали в результате значительную устойчивость к отрицательным углам атаки, а также и возможность применения СТ и для привода генераторов, вырабатывающих ток с частотой 60 Гц (с частотой вращения 3600 об./мин), то есть возможность увеличения частоты вращения на 20% без заметных потерь кпд. Однако в этом случае практически неизбежны потери кпд на режимах пониженной мощности (приводящих к дополни-тельному увеличению отрицательных углов атаки).
Особенности конструкции СТ
Для снижения материалоемкости и веса СТ использовались проверенные авиационные подходы к конструированию турбины. В результате масса ротора, несмотря на увеличение диаметра и количества ступеней, оказа-лась равной массе ротора силовой турбины ГТУ-16ПЭР. Это обеспечило значительную унификацию трансмиссий, унифицированы также масляная система, система наддува опор и охлаждения СТ.
Увеличено количество и улучшено качество воздуха, применяемого для наддува опор трансмиссионных подшипников, включая его очистку и охлаждение. Улучшено также качество смазки трансмиссионных подшипников путем применения фильтроэлементов с тонкостью фильтрации до 6 мкм.
С целью повышения эксплуатационной привлекательности новой ГТЭ внедрена специально разработанная система управления, которая позволяет заказчику воспользоваться турбодетандерным (воздушным и газовым) и гидравлическим типами запуска.
Массогабаритные характеристики двигателя позволяют использовать для его размещения серийные конструкции блочно-комплектной электростанции ГТЭС-16П.
Шумо- и теплоизолирующий кожух (при размещении в капитальных помещениях) обеспечивает акустические характеристики ГТЭС на уровне, предусмотренном санитарными нормами.
В настоящее время первый двигатель проходит серию специальных испытаний. Газогенератор двигателя уже прошел первый этап эквивалентно-циклических испытаний и начал второй этап после ревизии технического состояния, который завершится весной 2007 года.

Силовая турбина в составе полноразмерного двигателя прошла первое специальное испытание, в ходе которого были сняты показатели по 7 дроссельным характеристикам и другие экспериментальные данные.
По результатам испытаний сделан вывод о работоспособности СТ и ее соответствии заявленным параметрам.
Кроме этого по результатам испытаний в конструкцию СТ внесены некоторые корректировки, в том числе изменена система охлаждения корпусов для снижения тепловыделения в помещение станции и обеспечения пожарной безопасности, а также для оптимизации радиальных зазоров повышения кпд, настройка осевой силы.
Очередное испытание силовой турбины планируется провести летом 2007 года.

Газотурбинная установка ГТЭ-16ПА
накануне специальных испытаний

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Самарский государственный аэрокосмический университет

имени академика С.П. Королева

Кафедра теории двигателей летательных аппаратов

Курсовая работа

по курсу: «Теория и расчет лопаточных машин»

Проектирование осевой турбины авиационного двигателя JT 9 D 20

Самара 2008

Задание

Произвести проектный расчет основных параметров турбокомпрессора высокого давления и построить меридиональное сечение турбины высокого давления ТРДД JT9D-70A, произвести термодинамический расчет турбины, кинематический расчет второй ступени турбины и спрофилировать лопатку рабочего колеса в трех сечениях: втулочном, среднем и периферийном сечениях.

Исходные параметры турбины известны из термодинамического расчета двигателя на взлетном режиме (H П =0 и M П =0).

Таблица 1. - Исходные данные для проектирования турбины

Турбина высокого давления

Параметр

Численное значение

Размерность

Т*ТНД = Т*Т

Р*ТНД = Р*Т

Реферат

Курсовая работа по термогазодинамическому проектированию осевой турбины JT9D20.

Пояснительная записка: 32 стр., 1 рис., 2 табл., 3 прил., 4 источника.

ТУРБИНА, КОМПРЕССОР, ПРОТОЧНАЯ ЧАСТЬ, КОЛЕСО РАБОЧЕЕ, АППАРАТ СОПЛОВОЙ, СТУПЕНЬ, УГОЛ ВЫХОДА ПОТОКА, УГОЛ ЭФФЕКТИВНЫЙ, УГОЛ УСТАНОВКИ ПРОФИЛЯ, ШАГ РЕШЕТКИ, ШИРИНА РЕШЕТКИ

В данной курсовой работе был произведен расчет диаметральных размеров турбины высокого давления, построено меридиональное сечение проточной части, выполнен кинематический расчет ступени на среднем диаметре и расчет параметров по высоте лопатки при законе закрутки б=const с построением треугольников скоростей на входе на выходе из РК в трех сечениях (втулочном, периферийном и сечении на среднем диаметре). Рассчитан профиль лопатки рабочего колеса второй ступени с последующим построение контура профиля в решетке в трех сечениях.

Условные обозначения

D - диаметр, м;

Относительный диаметр втулки;

h - высота лопатки, м;

F - площадь сечения, м 2 ;

G - массовый расход газа (воздуха), кг/с;

H - высота полета, км; напор компрессора, кДж/кг;

i - удельная энтальпия, кДж/кг;

k - показатель изоэнтропы;

l - длина, м;

М - число Маха;

n - частота вращения, 1/мин;

Р - давление, кПа;

Приведенная скорость;

с - скорость потока, м/с;

q(), (), () - газодинамические функции от;

R - газовая постоянная, кДж/кгград;

L * к(т) - удельная работа компрессора (турбины);

к(т) - КПД компрессора (турбины);

S - осевая ширина венца, м;

Т - температура, К;

Назначенный ресурс, ч;

V - скорость полета, м/с;

z - число ступеней;

к, т - степень повышения (понижения) полного давления;

Коэффициент восстановления полного давления воздуха (газа) в элементах двигателя; растягивающие напряжения, МПа;

Коэффициент изменения массового расхода;

U - окружная скорость, м/с;

Y т * =U т ср /C * т s - параметр нагруженности турбины;

Величина зазора, м;

U 2 т ср h т вых /D ср вых - параметр напряжений в лопатках турбины, м 2 /с 2 ;

К тк, К тв - параметры согласования газогенератора, турбовентилятора.

Индексы

a - осевая составляющая;

в - воздух сечение на входе в компрессор

вент - вентилятор

взл - взлетный;

вт - втулочное сечение;

г - газы сечение на выходе из турбины

к - компрессор сечение на выходе из компрессора

кр - критический

кс - камера сгорания

н - сечение невозмущенного потока

на - направляющий аппарат;

охл - охлаждение;

п - полетный параметр, периферийный диаметр;

пр - приведенные параметры;

пс - подпорная ступень

s - изоэнтропические параметры;

с - секундный сечение на выходе из сопла

ср - средний параметр;

ст - параметр ступени;

т - топливо турбина сечение на входе в турбину

ч - часовой

* - параметры торможения.

Сокращения

ВД - высокое давление;

НД - низкое давление;

ВНА - входной направляющий аппарат;

ГДФ - газодинамические функции

ГТД - газотурбинный двигатель

КПД - коэффициент полезного действия;

НА - направляющий аппарат;

РК - рабочее колесо;

СА - сопловой аппарат турбины;

САУ - стандартные атмосферные условия

ТРДД - турбореактивный двухконтурный двигатель.

Введение

1. Проектный расчет основных параметров турбины высокого давления

1.1 Расчет геометрических и режимных параметров турбины ВД

1.2 Построение меридионального сечения проточной части турбины ВД

2. Газодинамический расчет турбины ВД

2.1 Распределение теплоперепада по ступеням

2.2 Расчёт ступени по среднему диаметру

2.3 Расчет эффективной работы ступени с учетом потерь на трение диска и в радиальном зазоре

2.4 Расчет параметров потока на различных радиусах

Заключение

Список использованных источников

Введение

Данная работа содержит упрощенный вариант газодинамического расчета осевой турбины, при котором вариантный поиск оптимальных (компромиссных) параметров заменяется надежными статистическими рекомендациями, полученным при систематизации материалов по расчету турбин современных ГТД. Проектирование выполняется по исходным параметрам, полученным в термогазодинамическом расчете двигателя.

Цель проектирования осевой авиационной турбины состоит в определении основных геометрических, кинематических и термодинамических параметров в целом и ее отдельных ступеней, которые обеспечивают расчетные значения удельных и общих параметров двигателя. В этой связи задачи проектирования предполагают: выбор основных геометрических параметров проектируемой турбины при заданных параметрах рабочего тела с учетом целевого назначения ГТД; распределение теплоперепада по ступеням, выполнение расчета параметров потока в зазорах между ступенями; расчет параметров потока в элементах проточной части второй ступени турбины на среднем диаметре; выбор закона закрутки и расчет изменения параметров потока вдоль радиуса (высоты лопатки) проектируемой ступени; выполнение профилирования рабочих лопаток проектируемой ступени.

1. Проектный расчет основных параметров турбины высокого

давления

1.1 Расчет геометрических и режимных параметров турбины ВД

Геометрические параметры турбины, которые необходимо определить, приведены на рисунке 1.

Рисунок 1. - Геометрическая модель осевой турбины

1. Определяется величина отношения D ср /h 2 (h 2 - высота рабочих лопаток на выходе из турбины ВД) по формуле

где е т - параметр напряжений, величина которого обычно располагается в пределах (13…18) 10 3 м 2 /с 2 .

Принимаем е т =15 10 3 м 2 /с 2 . Тогда:

С целью получения высокого КПД желательно иметь. Поэтому выбирается новое значение. Тогда,

2. Задаваясь величиной осевой скорости газа на входе в турбину (С 0 =150 м/с), определяют приведенную осевую скорость л 0 (л 0 =0,20…0,25)

Кольцевая площадь на входе в СА турбины ВД:

3. Вычисляем кольцевую площадь на выходе из турбины. Для этого предварительно оценивают величину осевой составляющей скорости на выходе из турбины. Принимаем, что /= 1,5; . Тогда

4. По выбранной величине, определяется высота рабочей лопатки на выходе из турбины ВД:

5. Средний диаметр на выходе из турбины ВД

6. Периферийный диаметр на выходе из РК:

7. Втулочный диаметр на выходе из РК:

8. Форма проточной части имеет вид: Поэтому:

Высота сопловой лопатки на входе в турбину оценивается следующим образом:

9. Периферийный диаметр соплового аппарата на входе в турбину ВД:

10. Втулочный диаметр на входе в турбину ВД:

11. Частота вращения ротора турбины ВД:

1.2 Построение меридионального сечения проточной части

турбины ВД

Наличие меридиональной формы проточной части необходимо для определения характерных диаметров Di в любом контрольном сечении ступени, а не только в сечениях «0» и «2». Эти диаметры служат основой при выполнении, например, расчета параметров потока на различных радиусах проточной части, а также проектирования профилей контрольных сечений пера лопатки.

1. Ширина венца соплового аппарата первой ступени:

принимаем кСА = 0,06

2. Ширина венца рабочего колеса первой ступени:

принимаем кРК = 0,045

3. Ширина венца соплового аппарата второй ступени:

4. Ширина венца рабочего колеса второй ступени:

5. Осевой зазор между сопловым аппаратом и рабочим колесом обычно определяется из соотношения:

Осевой зазор между сопловым аппаратом и рабочим колесом первой ступени:

6. Осевой зазор между рабочим колесом первой ступени и сопловым аппаратом второй ступени:

7. Осевой зазор между сопловым аппаратом и рабочим колесом второй ступени:

8. Радиальный зазор между торцами перьев лопаток и корпусом обычно принимается в диапазоне 0,8…1,5 мм. В нашем случае принимаем:

2 . Г азодинамический расчет турбины ВД

2.1 Распреде ление теплоперепада по ступеням

Термодинамические параметры рабочего тела на входе и выходе из ступеней.

1. Найдем среднее значение теплоперепада на ступень

.

Теплоперепад последней ступени принимают равным:

Принимаем:

кДж/кг

Тогда: кДж/кг

2. Определим степень реактивности (для второй ступени)

м

; ; .

3. Определим параметры термодинамического состояния газа на входе во вторую ступень

; ;

; ; .

4. Вычислим величину изоэнтропической работы в ступени при расширении газа до давления.

Принимаем:

.

5. Определим параметры термодинамического состояния газа на выходе из ступени при условии изоэнтропического расширения от давления до:

; .

6. Вычислим степень понижения газа в ступени:

.

7. Определим полное давление на входе в ступень:

,

8. Угол выхода потока из РК принимаем.

9. Газодинамические функции на выходе из ступени

; .

10. Статическое давление за ступенью

.

11. Термодинамические параметры потока на выходе из ступени при условии изоэнтропического расширения от давления до

; .

12. Величина изоэнтропической работы в ступени при расширении газа от давления до

.

2.2 Расчёт ступени по среднем у диаметр у

Параметры потока за сопловым аппаратом

1. Определим изоэнтропическую скорость истечения газа из СА:

.

2. Определим приведенную изоэнтропическую скорость потока на выходе из СА:

;

3. Коэффициент скорости СА принимаем:

.

4. Газодинамические функции потока на выходе из СА:

; .

5. Определим по таблице коэффициент восстановления полного давления:

.

6. Угол выхода потока из сопловых лопаток:

;

Где.

7. Угол отклонения потока в косом срезе СА:

.

8. Эффективный угол на выходе из сопловой решетки

.

9. Угол установки профиля в решетке находим по графику в зависимости от.

Принимаем: ;

;

.

10. Хорда профиля лопатки СА

.

11. Значение оптимального относительного шага определяется по графику в зависимости от и:

12. Оптимальный шаг решетки СА в первом приближении

.

13. Оптимальное число лопаток СА

.

Принимаем.

14. Окончательное значение оптимального шага лопаток СА

.

15. Величина горла канала СА

.

16. Параметры термодинамического состояния газа на выходе из СА при условии изоэнтропического расширения в сопловой решетке

; .

17. Статическое давление в зазоре между СА и РК

.

18. Действительная скорость газа на выходе из СА

.

19. Термодинамические параметры потока на выходе из СА

;

; .

20. Плотность газа на выходе из СА

.

21. Осевая и окружная составляющие абсолютной скорости потока на выходе из СА

;

.

22. Окружная составляющая относительной скорости потока на входе в РК

.

23. Угол входа потока в РК в относительном движении

.

24. Относительная скорость потока на входе в РК

.

25. Термодинамические параметры газа на входе в РК

;

; .

26. Приведенная скорость потока в относительном движении

.

27. Полное давление в относительном движении воздуха

.

Параметры потока на выходе из РК

28. Термодинамические параметры потока

;

;.

29. Изоэнтропическая скорость потока в относительном движении

.

30. Приведенная изоэнтропическая скорость потока в относительном движении:

.

Принимаем, т.к. относительное движение - энергоизолированное движение.

31. Приведенная скорость потока в относительном движении

Примем:

,

Тогда:

; .

32. С помощью графика определяем коэффициент восстановления полного давления:

.

33. Угол выхода потока из РК в относительном движении (15є<в 2 <45є)

Вычислим:

;

.

34. Определим по таблице угол отклонения потока в косом срезе рабочих лопаток:

.

35. Эффективный угол на выходе из РК

.

36. Определим по таблице угол установки профиля в рабочей лопатке:

Вычислим:;

.

37. Хорда профиля лопатки РК

.

38. Значение оптимального относительного шага решетки РК определяем по таблицам:

.

39. Относительный шаг решетки РК в первом приближении

.

40. Оптимальное число лопаток РК

.

Принимаем.

41. Окончательное значение оптимального шага лопаток РК

.

42. Величина горла канала рабочих лопаток

.

43. Относительная скорость на выходе из РК

44. Энтальпия и температура газа на выходе из РК

; .

45. Плотность газа на выходе из РК

46. Осевая и окружная составляющие относительной скорости на выходе из РК

;

.

47. Окружная составляющая абсолютной скорости потока за РК

48. Абсолютная скорость газа за РК

.

49. Угол выхода потока из РК в абсолютном движении

50. Полная энтальпия газа за РК

.

2.3 Расчет эффективной работы ступени с учетом потерь на трение

диска и в радиальном зазоре

Чтобы определить эффективную работу ступени, необходимо учесть потери энергии, связанные с утечками рабочего тела в радиальный зазор и трением диска ступени о газ. Для этого определяем:

51. Удельная работа газа на лопатках РК

52. Потери на утечку, которые зависят от конструктивных особенностей ступени.

В конструкциях современных турбин ГТД для снижения утечек обычно на рабочих колесах применяются бандажи с лабиринтными уплотнениями. Утечки через такие уплотнения вычисляются по формуле:

Принимаем коэффициент расхода лабиринтного уплотнения:

Площадь зазора определяется из выражения:

Для определения давления сначала находятся изоэнтропическая приведенная скорость потока на выходе в РК на периферийном диаметре и соответствующая газодинамическая функция:

; .

Давление на периферии

Отношение давлений на уплотнении

Принимаем число гребешков:

Потери на утечки

53. Потери энергии на трение диска ступени о газ

,

где D 1вт берется по чертежу проточной части

54. Суммарная потеря энергии на утечки и трение диска

55. Полная энтальпия газа на выходе из РК с учетом потерь на утечки и трение диска

;

56. Энтальпия газа по статическим параметрам на выходе из РК с учетом потерь на утечки и трение диска

57. Полное давление газа на выходе из РК с учетом потерь на утечки и трение диска

58. Действительная эффективная работа ступени

59. Действительный к.п.д. ступени

60. Отличие действительной эффективной работы от заданной

что составляет 0,78%.

2.4 Расчет параметров потока на различных радиусах

турбина давление лопатка колесо

При значениях D ср /h л < 12 по высоте лопатки возникает переменность параметров потока, определяемая влиянием центробежных сил и изменением окружной скорости. В этом случае для снижения потерь энергии лопатки необходимо выполнять закрученными. Применение закона закрутки dб/dr = 0 позволяет повысить технологическое качество лопаток. Применение закона б 1 =const позволяет выполнять сопловые венцы с б 1л =const, а закон б 2 =const позволяет улучшить технологичность лопаток соплового венца последующей ступени.

Определение параметров для втулочного сечения лопатки

1. Относительный диаметр втулки

2. Угол выхода потока в абсолютном движении

3. Коэффициент скорости

4. Абсолютная скорость потока на выходе из СА

5. Окружная составляющая абсолютной скорости

6. Осевая составляющая абсолютной скорости

7. Изоэнтропическая скорость истечения газа из СА

8. Термодинамические параметры на выходе из СА

; ;

;

; .

9. Статическое давление

.

10. Плотность газа

11. Окружная скорость во втулочном сечении на входе в РК

12. Окружная составляющая относительной скорости на входе в РК

13. Угол входа потока в РК в относительном движении

.

14. Относительная скорость у втулки

15. Термодинамические параметры на входе в РК в относительном движении

,

,

16. Полное давление на входе в РК в относительном движении

17. Приведенная относительная скорость на входе в РК

Параметры в периферийном сечении

18. Относит. диаметр периферийного сечения

19. Угол выхода потока из СА в абсолютном движении

20. Коэффициент скорости

21. Абсолютная скорость на выходе из СА

22. Окружная и осевая составляющие абсолютной скорости

23. Изоэнтропическая скорость истечения газа из СА

24. Термодинамические параметры потока на выходе из СА

;

, ; .

25. Статическое давление

26. Плотность газа

27. Окружная скорость вращения колеса на периферии

28. Окружная составляющая относительной скорости на входе в РК

29. Угол входа потока в РК в относительном движении

.

30. Относительная скорость потока на периферии

31. Термодинамические параметры потока в относительном движении на входе в РК

,

32. Полное давление на входе в РК в относительном движении

.

33. Приведенная относительная скорость на входе в РК

Расчет параметров потока на выходе из РК

34. Относительный диаметр втулки

35. Угол потока в абсолютном движении

36. Окружная скорость во втулочном сечении на выходе из РК

37. Статическое давление на выходе из РК

38. Термодинамические параметры в РК

,

39. Изоэнтропическая скорость потока на выходе из РК

40. Приведенная изоэнтропическая скорость

41. Скорость потока за РК в относительном движении.

, где

коэффициент скорости.

42. Термодинамические параметры потока на выходе из РК

;

43. Плотность газа за рабочим венцом

44. Угол выхода потока в относительном движении

45. Окружная и осевая составляющие относительной скорости потока

46. Абсолютная скорость на выходе из рабочего венца

47. Окружная составляющая абсолютной скорости

48. Полная энтальпия и температура потока на выходе из РК

49. Газодинамические функции на выходе из РК

;

50. Полное давление потока в абсолютном движении на выходе из РК

Расчет параметров в периферийном сечении на выходе из РК

51. Относительный диаметр периферийного сечения

52. Угол потока в абсолютном движении

53. Окружная скорость в периферийном сечении на выходе из РК

54. Статическое давление на выходе из РК

55. Термодинамические параметры при изоэнтропическом расширении в РК

;

56. Изоэнтропическая скорость потока на выходе из РК

57. Приведенная изоэнтропическая скорость

58. Скорость потока за РК в относительном движении

Коэффициент скорости;

59. Термодинамические параметры потока на выходе из РК

;

60. Плотность газа за рабочим венцом

61. Угол выхода потока в относительном движении

62. Окружная и осевая составляющие относительной скорости потока

63. Абсолютная скорость выхода из РК

64. Окружная составляющая абсолютной скорости

65. Полная энтальпия и температура потока на выходе из РК

66. Газодинамические функции на выходе из РК

;

67. Полное давление потока в абсолютном движении на выходе из РК

3. Профилирование лопатки рабочего колеса

Таблица 2. - Исходные данные для профилирования лопаток РК

Исходный параметр и расчетная формула

Размерность

Контрольные сечения

D (по чертежу проточной части ступени)

Таблица 3. - Рассчитанные величины для профилирования лопаток РК

Величина

Средний диаметр

Периферия

Заключение

В курсовой работе была рассчитана и построена проточная часть турбины высокого давления, произведен кинематический расчет второй ступени турбины высокого давления на среднем диаметре, расчет эффективной работы с учетом потерь на трение диска и в радиальном зазоре, расчет параметров по высоте лопатки при законе закрутки б=const с построением треугольников скоростей. Было выполнено профилирование лопатки рабочего колеса в трех сечениях.

Список использованных источников

1. Термогазодинамическое проектирование осевых турбин авиационных ГТД с помощью р-i-T функций: Учеб. пособие / Н.Т. Тихонов, Н.Ф. Мусаткин, В.Н. Матвеев, В.С. Кузьмичев; Самар. гос. аэрокосм. ун-т. - Самара, 2000. - 92. с.

2. Мамаев Б.И., Мусаткин Н.Ф., Аронов Б.М. Газодинамическое проектирование осевых турбин авиационных ГТД: Учебное пособие. - Куйбышев: КуАИ, 1984 - 70 с.

3. Проектный расчет основных параметров турбокомпрессоров авиационных ГТД: Учеб. пособие / В.С. Кузьмичев, А.А. Трофимов; КуАИ. - Куйбышев, 1990. - 72 с.

4. Термогазодинамический расчет газотурбинных силовых установок. / Дорофеев В.М., Маслов В.Г., Первышин Н.В., Сватенко С.А., Фишбейн Б.Д. - М., «Машиностроение», 1973 - 144 с.

Размещено на Allbest.ru

Подобные документы

    Расчет параметров потока и построение решеток профилей ступени компрессора и турбины. Профилирование камеры сгорания, реактивного сопла проектируемого двигателя и решеток профилей рабочего колеса турбины высокого давления. Построение профилей лопаток.

    курсовая работа , добавлен 27.02.2012

    Профилирование лопатки первой ступени турбины высокого давления. Расчет и построение решеток профилей дозвукового осевого компрессора. Профилирование решеток профилей рабочего колеса по радиусу. Расчет и построение решеток профилей РК турбины на ПЭВМ.

    курсовая работа , добавлен 04.02.2012

    Определение основных геометрических размеров меридионального сечения ступени турбины. Расчет параметров потока в сопловом аппарате ступени на среднем диаметре. Установление параметров потока по радиусу проточной части при профилировании лопаток.

    курсовая работа , добавлен 14.11.2017

    Проектирование центробежного компрессора в транспортном газотурбинном двигателе: расчет параметров потока на выходе, геометрических параметров выходного сечения рабочего колеса, профилирование меридионального отвода, оценка максимальной нагрузки лопатки.

    курсовая работа , добавлен 05.04.2010

    Термогазодинамический расчет двигателя, выбор и обоснование параметров. Согласование параметров компрессора и турбины. Газодинамический расчет турбины и профилирование лопаток РК первой ступени турбины на ЭВМ. Расчет замка лопатки турбины на прочность.

    дипломная работа , добавлен 12.03.2012

    Расчет и профилирование элементов конструкции двигателя: рабочей лопатки первой ступени осевого компрессора, турбины. Методика расчета треугольников скоростей. Порядок определения параметров камеры сгорания, геометрических параметров проточной части.

    курсовая работа , добавлен 22.02.2012

    Расчёт и профилирование рабочей лопатки ступени компрессора, газовой турбины высокого давления, кольцевой камеры сгорания и выходного устройства. Определение компонентов треугольников скоростей и геометрических параметры решеток профилей на трех радиусах.

    курсовая работа , добавлен 17.02.2012

    Термогазодинамический расчет двигателя. Согласование работы компрессора и турбины. Газодинамический расчет осевой турбины на ЭВМ. Профилирование рабочих лопаток турбины высокого давления. Описание конструкции двигателя, расчет на прочность диска турбины.

    дипломная работа , добавлен 22.01.2012

    Выбор и обоснование мощности и частоты вращения газотурбинного привода: термогазодинамический расчет двигателя, давления в компрессоре, согласование параметров компрессора и турбины. Расчет и профилирование решеток профилей рабочего колеса турбины.

    курсовая работа , добавлен 26.12.2011

    Профилирование лопатки первой ступени компрессора высокого давления. Компьютерный расчет лопатки турбины. Проектирование камеры сгорания. Газодинамический расчет сопла. Формирование исходных данных. Компьютерное профилирование эжекторного сопла.

Изобретение относится к турбинам низкого давления газотурбинных двигателей авиационного применения. Турбина низкого давления газотурбинного двигателя включает ротор, статор с задней опорой, лабиринтное уплотнение с внутренним и внешним фланцами на задней опоре статора. Лабиринтное уплотнение турбины выполнено двухъярусным. Внутренний ярус образован двумя уплотнительными гребешками лабиринта, направленными к оси турбины, и рабочей поверхностью внутреннего фланца лабиринтного уплотнения, направленной к проточной части турбины. Внешний ярус образован уплотнительными гребешками лабиринта, направленными к проточной части турбины, и рабочей поверхностью внешнего фланца лабиринтного уплотнения, направленной к оси турбины. Уплотнительные гребешки лабиринта внутреннего яруса лабиринтного уплотнения выполнены с параллельными внутренними стенками, между которыми установлено демпфирующее кольцо. Внешний фланец лабиринтного уплотнения выполнен с наружной замкнутой кольцевой воздушной полостью. Между проточной частью турбины и внешним фланцем лабиринтного уплотнения размещена кольцевая заградительная стенка, установленная на задней опоре статора. Рабочая поверхность внутреннего фланца лабиринтного уплотнения расположена таким образом, чтобы отношение внутреннего диаметра на выходе из проточной части турбины к диаметру рабочей поверхности внутреннего фланца лабиринтного уплотнения составляло 1,05 1,5. Изобретение позволяет повысить надежность турбины низкого давления газотурбинного двигателя. 3 ил.

Рисунки к патенту РФ 2507401

Изобретение относится к турбинам низкого давления газотурбинных двигателей авиационного применения.

Известна турбина низкого давления газотурбинного двигателя с задней опорой, в которой лабиринтное уплотнение, отделяющее заднюю разгрузочную полость турбины от проточной части на выходе из турбины, выполнено в виде одного яруса. (С.А.Вьюнов, «Конструкция и проектирование авиационных газотурбинных двигателей», Москва, «Машиностроение», 1981 г., стр.209).

Недостатком известной конструкции является низкая стабильность давления в разгрузочной полости турбины из-за нестабильной величины радиальных зазоров в лабиринтном уплотнении, особенно на переменных режимах работы двигателя.

Наиболее близкой к заявляемой конструкции является турбина низкого давления газотурбинного двигателя, включающая ротор, статор с задней опорой, лабиринтное уплотнение с внутренним и внешним фланцами лабиринта, установленными на задней опоре статора (патент US № 7905083, F02K 3/02, 15.03.2011).

Недостатком известной конструкции, принятой за прототип, является повышенная величина осевой силы ротора турбины, что снижает надежность турбины и двигателя в целом из-за низкой надежности радиально-упорного подшипника, воспринимающего повышенную осевую силу ротора турбины.

Технический результат заявленного изобретения заключается в повышении надежности турбины низкого давления газотурбинного двигателя за счет снижения величины осевой силы ротора турбины и обеспечения стабильности осевой силы при работе на переходных режимах.

Указанный технический результат достигается тем, что в турбине низкого давления газотурбинного двигателя, включающей ротор, статор с задней опорой, лабиринтное уплотнение, выполненное с внутренним и внешним фланцами, установленными на задней опоре статора, лабиринтное уплотнение турбины выполнено двухъярусным, при этом внутренний ярус лабиринтного уплотнения образован двумя уплотнительными гребешками лабиринта, направленными к оси турбины, и рабочей поверхностью внутреннего фланца лабиринтного уплотнения, направленной к проточной части турбины, а внешний ярус лабиринтного уплотнения образован уплотнительными гребешками лабиринта, направленными к проточной части турбины, и рабочей поверхностью внешнего фланца лабиринтного уплотнения, направленной к оси турбины, причем уплотнительные гребешки лабиринта внутреннего яруса лабиринтного уплотнения выполнены с параллельными внутренними стенками, между которыми установлено демпфирующее кольцо, а внешний фланец лабиринтного уплотнения выполнен с наружной замкнутой кольцевой воздушной полостью, при этом между проточной частью турбины и внешним фланцем лабиринтного уплотнения размещена кольцевая заградительная стенка, установленная на задней опоре статора, а рабочая поверхностью внутреннего фланца лабиринтного уплотнения расположена таким образом, чтобы соблюдалось условие:

где D - внутренний диаметр на выходе из проточной части турбины,

Выполнение лабиринтного уплотнения на выходе из турбины низкого давления двухъярусным, располагая ярусы уплотнения таким образом, что внутренний ярус образован двумя направленными к оси турбины уплотнительными гребешками лабиринта и направленной к проточной части турбины рабочей поверхностью внутреннего фланца лабиринтного уплотнения, а внешний ярус образован направленными к проточной части турбины уплотнительными гребешками лабиринта и направленными к оси турбины рабочими поверхностями внешнего фланца лабиринтного уплотнения, позволяет обеспечить надежную работу лабиринтного уплотнения на переходных режимах работы турбины, что обеспечивает стабильность осевой силы, действующей на ротор турбины, и повышает ее надежность.

Выполнение уплотнительных гребешков лабиринта внутреннего яруса уплотнения с параллельными внутренними стенками, между которыми установлено демпфирующее кольцо, обеспечивает снижение вибронапряжений в лабиринте и уменьшение радиальных зазоров между гребешками лабиринта и фланцами лабиринтного уплотнения.

Выполнение внешнего фланца лабиринтного уплотнения с наружной замкнутой воздушной полостью, а также размещение между проточной частью турбины и внешним фланцем лабиринтного уплотнения кольцевой заградительной стенки, установленной на задней опоре статора, позволяет существенно снизить темп нагрева и охлаждения внешнего фланца лабиринтного уплотнения на переходных режимах, приблизив его таким образом к темпу нагрева и охлаждения внешнего яруса лабиринтного уплотнения, что обеспечивает стабильность радиальных зазоров между статором и ротором в уплотнении и повышает надежность турбины низкого давления за счет поддержания стабильного давления в разгрузочной затурбинной полости.

Выбор соотношения D/d=1,05 1,5 обусловлен тем, что при D/d<1,05 снижается надежность работы лабиринтного уплотнения из-за воздействия на уплотнение высокотемпературного газа, выходящего из турбины низкого давления.

При D/d>1,5 снижается надежность газотурбинного двигателя за счет снижения осевой разгрузочной силы, действующей на ротор турбины низкого давления.

На фиг.1 изображен продольный разрез турбины низкого давления газотурбинного двигателя.

На фиг.2 - элемент I на фиг.1 в увеличенном виде.

На фиг.3 - элемент II на фиг.2 в увеличенном виде.

Турбина 1 низкого давления газотурбинного двигателя состоит из ротора 2 и статора 3 с задней опорой 4. Для уменьшения осевых усилий от газовых сил, действующих на ротор 2 на его выходе, между диском последней ступени 5 ротора 2 и задней опорой 4 выполнена разгрузочная полость 6 повышенного давления, которая надувается воздухом из-за промежуточной ступени компрессора (не показано) и отделена от проточной части 7 турбины 1 двухъярусным лабиринтным уплотнением, причем лабиринт 8 уплотнения зафиксирован резьбовым соединением 9 на диске последней ступени 5 ротора 2, а внутренний фланец 10 и внешний фланец 11 лабиринтного уплотнения закреплены на задней опоре 4 статора 3. Внутренний ярус лабиринтного уплотнения образован рабочей поверхностью 12 внутреннего фланца 10, направленной (обращенной) в сторону проточной части 7 турбины 1, и двумя уплотнительными гребешками 13, 14 лабиринта 8, направленными к оси 15 турбины 1. Внутренние стенки 16,17 соответственно гребешков 13, 14 выполнены параллельными между собой. Между внутренними стенками 16 и 17 установлено демпфирующее кольцо 18, способствующее снижению вибронапряжений в лабиринте 8 и уменьшению радиальных зазоров 19 и 20, соответственно, между лабиринтом 8 ротора 2 и фланцами 10, 11. Внешний ярус лабиринтного уплотнения образован рабочей поверхностью 21 внешнего фланца 11, направленной (обращенной) в сторону оси 15 турбины 1, и уплотнительными гребешками 22 лабиринта 8, направленными к проточной части 7 турбины 1. Внешний фланец 11 лабиринтного уплотнения выполнен с наружной замкнутой кольцевой воздушной полостью 23, ограниченной с внешней стороны стенкой 24 внешнего фланца 11. Между стенкой 24 внешнего фланца 11 лабиринтного уплотнения и проточной частью 7 турбины 1 размещена кольцевая заградительная стенка 25, установленная на задней опоре 4 статора 3 и предохраняющая внешний фланец 11 от высокотемпературного газового потока 26, протекающего в проточной части 7 турбины 1.

Рабочая поверхность 12 внутреннего фланца 10 лабиринтного уплотнения расположена таким образом, чтобы соблюдалось условие:

где D - внутренний диаметр проточной части 7 турбины 1 (на выходе из проточной части 7);

d - диаметр рабочей поверхности 12 внутреннего фланца 10 лабиринтного уплотнения.

Работает устройство следующим образом.

При работе турбины 1 низкого давления на температурное состояние внешнего фланца 11 лабиринтного уплотнения может оказывать влияние изменение температуры газового потока 26 в проточной части 7 турбины 1, что могло бы существенно изменить радиальный зазор 19 и действующую на ротор 2 осевую силу вследствие изменения давления воздуха в разгрузочной полости 6. Однако этого не происходит, так как внутренний фланец 10 внутреннего яруса лабиринтного уплотнения недоступен воздействию газового потока 26, что способствует стабильности радиального зазора 20 между внутренним фланцем 10 и лабиринтными гребешками 13, 14, а также стабильности давления в полости 6 и стабильности осевой силы, действующей на ротор 2 турбины 1.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Турбина низкого давления газотурбинного двигателя, включающая ротор, статор с задней опорой, лабиринтное уплотнение с внутренним и внешним фланцами, установленными на задней опоре статора, отличающаяся тем, что лабиринтное уплотнение турбины выполнено двухъярусным, при этом внутренний ярус лабиринтного уплотнения образован двумя уплотнительными гребешками лабиринта, направленными к оси турбины, и рабочей поверхностью внутреннего фланца лабиринтного уплотнения, направленной к проточной части турбины, а внешний ярус лабиринтного уплотнения образован уплотнительными гребешками лабиринта, направленными к проточной части турбины, и рабочей поверхностью внешнего фланца лабиринтного уплотнения, направленной к оси турбины, причем уплотнительные гребешки лабиринта внутреннего яруса лабиринтного уплотнения выполнены с параллельными внутренними стенками, между которыми установлено демпфирующее кольцо, а внешний фланец лабиринтного уплотнения выполнен с наружной замкнутой кольцевой воздушной полостью, при этом между проточной частью турбины и внешним фланцем лабиринтного уплотнения размещена кольцевая заградительная стенка, установленная на задней опоре статора, а рабочая поверхность внутреннего фланца лабиринтного уплотнения расположена таким образом, чтобы соблюдалось условие:

D/d=1,05 1,5, где

D - внутренний диаметр на выходе из проточной части турбины,

d - диаметр рабочей поверхности внутреннего фланца лабиринтного уплотнения.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Описание конструкции

турбина двигатель прочность силовой

1.1 АЛ-31Ф

АЛ-31Ф -- двухконтурный двухвальный турбореактивный двигатель со смешением потоков внутреннего и наружного контуров за турбиной, общей для обоих контуров форсажной камерой и регулируемым сверхзвуковым всережимным реактивным соплом. Компрессор низкого давления осевой 3-ступенчатый с регулируемым входным направляющим аппаратом (ВНА), компрессор высокого давления осевой 7-ступенчатый с регулируемым ВНА и направляющими аппаратами первых двух ступеней. Турбины высокого и низкого давления -- осевые одноступенчатые; лопатки турбин и сопловых аппаратов охлаждаемые. Основная камера сгорания кольцевая. В конструкции двигателя широко применяются титановые сплавы (до 35 % массы) и жаропрочные стали.

1.2 Турбина

Общие характеристики

Турбина двигателя осевая, реактивная, двухступенчатая, двухвальная. Первая ступень - турбина высокого давления. Вторая ступень - низкого давления. Все лопатки и диски турбины охлаждаемые.

Основные параметры (Н=0, М=0, режим «Максимальный») и материалы деталей турбины приведены в таблице 1.1 и 1.2.

Таблица 1.1

Параметр

Степень понижения полного давления газа

КПД турбины по заторможенным параметрам потока

Окружная скорость на периферии лопаток, м/с

Частота вращения ротора, об/мин

Втулочное отношение

Температура газа на входе в турбину

Расход газа, кг/сек

Параметр нагруженности, м/с

Таблица 1.2

Конструкция турбины высокого давления

Турбина высокого давления предназначена для привода компрессора высокого давления, а также двигательных и самолётных агрегатов, установленных на коробках приводов. Турбина конструктивно состоит из ротора и статора.

Ротор турбины высокого давления

Ротор турбины состоит из рабочих лопаток, диска и цапфы.

Рабочая лопатка - литая, полая с полупетлевым течением охлаждающего воздуха.

Во внутренней полости, с целью организации течения охлаждающего воздуха, предусмотрены рёбра, перегородки и турбулизаторы.

На последующих сериях лопатка с полупетлевой схемой охлаждения заменяется лопаткой с циклонно-вихревой схемой охлаждения.

Во внутренней полости вдоль передней кромки выполнен канал, в котором, как в циклоне, формируется течение воздуха с закруткой. Закрутка воздуха происходит вследствие его тангенциального подвода в канал через отверстия перегородки.

Из канала воздух выбрасывается через отверстия (перфорацию) стенки лопатки на спинку лопатки. Этот воздух создаёт на поверхности защитную плёнку.

В центральной части лопатки на внутренних поверхностях выполнены каналы, оси которых пересекаются. В каналах формируется турбулуизированное течение воздуха. Турбулизация струи воздуха и увеличение площади контакта обеспечивают увеличение эффективности теплообмена.

В районе выходной кромки выполнены турбулизаторы (перемычки) различной формы. Эти турбулизаторы интенсифицируют теплообмен, увеличивают прочность лопатки.

Профильная часть лопатки отделена от замка полкой и удлинённой ножкой. Полки лопаток, стыкуясь, образуют коническую оболочку, защищающую замковую часть лопатки от перегрева.

Удлинённая ножка, обеспечивая отдаление высокотемпературного газового потока от замка и диска, приводит к снижению количества тепла, передаваемого от профильной части к замку и диску. Кроме того, удлинённая ножка, обладая относительно низкой изгибной жёсткостью, обеспечивает снижения уровня вибрационных напряжений в профильной части лопатки.

Трёхзубый замок типа «Ёлочка» обеспечивает передачу радиальных нагрузок с лопаток на диск.

Зуб, выполненный в левой части замка, фиксирует лопатку от перемещения её по потоку, а паз совместно с элементами фиксации обеспечивает удержание лопатки от перемещения против потока.

На периферийной части пера, с целью облегчения приработки при касании о статор и, следовательно, предотвращения разрушения лопатки, на её торце сделана выборка

Для снижения уровня вибрационных напряжений в рабочих лопатках между ними под полками размещают демпферы, имеющие коробчатую конструкцию. При вращении ротора под действием центробежных сил демпферы прижимаются к внутренним поверхностям полок вибрирующих лопаток. За счёт трения в местах контакта двух соседних полок об один демпфер энергия колебаний лопаток будет рассеиваться, что и обеспечивает снижение уровня вибрационных напряжений в лопатках.

Диск турбины штампованный, с последующей механической обработкой. В периферийной части диска выполнены пазы типа «Ёлочка» для крепления 90 рабочих лопаток, канавки для размещения пластинчатых замков осевой фиксации лопаток и наклонные отверстия подвода воздуха, охлаждающего рабочие лопатки.

Воздух отбирается из ресивера, образованного двумя буртиками, левой боковой поверхностью диска и аппаратом закрутки. Под нижним буртиком размещены балансировочные грузы. На правой плоскости полотна диска выполнены буртик лабиринтного уплотнения и буртик, используемый при демонтаже диска. На ступенчатой части диска выполнены цилиндрические отверстия, под призонные болты, соединяющие вал, диск и цапфу ротора турбины.

Осевая фиксация рабочей лопатки осуществляется зубом с пластинчатым замком. Пластинчатый замок (один на две лопатки) вставляется в пазы лопаток в трёх местах диска, где сделаны вырезы, и разгоняется по всей окружности лопаточного венца. Пластинчатые замки, устанавливаемы в месте расположения вырезов в диске, имеют особую форму. Эти замки монтируются в деформированном состоянии, а после выпрямления входят в пазы лопаток. При выпрямлении пластинчатого замка лопатки поддерживают с противоположных торцов.

Балансировка ротора осуществляется грузиками, закрепляемыми в проточке буртика диска и зафиксированными в замке. Хвостик замка загибается на балансировочный грузик. Место отгиба контролируется на отсутствие трещин путём осмотра через лупу. Уравновешивание ротора можно выполнять перестановкой лопаток, допускается подрезка торцов грузов. Остаточный дисбаланс не более 25 гсм.

Диск с цапфой и валом КВД соединён призонными болтами. Головки болтов фиксируются от поворота пластинами, загибаемыми на срезы головок. От продольного перемещения болты удерживаются выступающими частями головок, входящих в кольцевой паз вала.

Цапфа обеспечивает опирание ротора на роликовый подшипник (межроторный подшипник).

Фланцем цапфа центрируется и соединяется с диском турбины. На наружных цилиндрических проточках цапфы размещении втулки лабиринтных уплотнений. Осевая и окружная фиксация лабиринтов осуществляется радиальными штифтами. Для предотвращения выпадения штифтов под воздействием центробежных сил после их запрессовки отверстия во втулках развальцовываются.

На наружной части хвостовика цапфы, ниже лабиринтов, размещено контактное уплотнение, зафиксированное корончатой гайкой. Гайка законтрена пластинчатым замком.

Внутри цапфы в цилиндрических поясках центрируется втулки контактного и лабиринтного уплотнений. Втулки удерживаются корончатой гайкой, ввернутой в резьбу цапфы. Гайка контрится отгибом усиков коронки в торцевые прорези цапфы.

В правой части внутренней полости цапфы размешено наружное кольцо роликового подшипника, удерживаемого корончатой гайкой, ввернутой в резьбу цапфы, которая контрится аналогичным образом.

Контактное уплотнение представляет собой пару, состоящую из стальных втулок и графитовых колец. Для гарантированного контактирования пар между графитовыми кольцами размещены плоские пружины. Между стальными втулками размещают дистанционную втулку, предотвращающую пережатие торцевого контактного уплотнения.

Статор турбины высокого давления

Статор турбины высокого давления состоит из наружного кольца, блоков сопловых лопаток, внутреннего кольца, аппаратом закрутки, уплотнения со вставками ТВД.

Наружное кольцо- цилиндрическая оболочка с фланцем. Кольцо расположено между корпусом камеры сгорания и корпусом ТНД.

В средней части наружного кольца выполнена проточка, по которой отцентрирована разделительная перегородка теплообменника.

В левой части наружного кольца на винтах присоединено кольцо верхнее, являющееся опорой жаровой трубы камеры сгорания и обеспечивающая подвод охлаждающего воздуха на обдув наружных полок лопаток соплового аппарата.

В правой части наружного кольца устанавливается уплотнение. Уплотнение состоит из кольцевой проставки с экранами, 36 секторных вставок ТВД и секторов крепления вставок ТВД на проставку.

На внутреннем диаметре вставок ТВД выполнена кольцевая нарезка, для уменьшения площади поверхности при касании рабочих лопаток ТВД для предотвращения перегрева периферийной части рабочих лопаток.

Уплотнение крепится на наружном кольце при помощи штифтов, в которых выполнены сверления. Через эти сверления на вставки ТВД подается охлаждающий воздух.

Через отверстия во вставках охлаждающий воздух выбрасывается в радиальный зазор между вставками и рабочими лопатками.

Для уменьшения перетекания горячего газа между вставками установлены пластины.

При сборке уплотнения вставки ТВД крепятся на проставке секторами при помощи штифтов. Такое крепление позволяет вставкам ТВД перемещаться относительно друг друга и проставки при нагреве в процессе работы.

Лопатки соплового аппарата объединены в 14 трехлопаточных блоков. Лопаточные блоки литые, со вставными и припаянными в двух местах дефлекторами с припаянной нижней крышкой с цапфой. Литая конструкция блоков, обладая высокой жесткостью, обеспечивает стабильность углов установки лопаток, снижение утечек воздуха и, следовательно, повышение КПД турбины, кроме того, такая конструкция более технологична.

Внутренняя полость лопатки перегородкой разделена на два отсека. В каждом отсеке размещены дефлекторы с отверстиями, обеспечивающими струйное натекание охлаждающего воздуха на внутренние стенки лопатки. На входных кромках лопаток выполнена перфорация.

В верхней полке блока выполнении 6 резьбовых отверстий, в которые вворачиваются винты крепления блоков сопловых аппаратов к наружному кольцу.

Нижняя полка каждого блока лопаток имеет цапфу, по которой через втулку центрируется внутренне кольцо.

Профиль пера с прилегающими поверхностями полок алюмосилицируется. Толщина покрытия 0,02-0,08 мм.

Для снижения перетекания газа между блоками, их стыки уплотнены пластинами, вставленными в прорези торцов блоков. Канавки в торцах блоков выполняются электроэрозионным способом.

Внутреннее кольцо выполнено в виде оболочки с втулками и фланцами, к которой приварена коническая диафрагма.

На левом фланце внутреннего кольца винтами присоединено кольцо, на которое опирается жаровая труба и через которое обеспечивается подвод воздуха, обдувающего внутренние полки лопаток соплового аппарата.

В правом фланце винтами закреплен аппарат закрутки, представляющий собой сварную оболочечную конструкцию. Аппарат закрутки предназначен для подачи и охлаждения воздуха, идущего к рабочим лопаткам за счет разгона и закрутки по направлению вращения турбины. Для повышения жесткости внутренней оболочки к ней приварены три подкрепляющих профиля.

Разгон и закрутка охлаждающего воздуха происходят в сужающейся части аппарата закрутки.

Разгон воздуха обеспечивает снижение температуры воздуха, идущего на охлаждение рабочих лопаток.

Закрутка воздуха обеспечивает выравнивание окружной составляющей скорости воздуха и окружной скорости диска.

Конструкция турбины низкого давления

Турбина низкого давления (ТНД) предназначена для привода компрессора низкого давления (КНД). Конструктивно состоит из ротора ТНД, статора ТНД и опоры ТНД.

Ротор турбины низкого давления

Ротор турбины низкого давления состоит из диска ТНД с рабочими лопатками, закреплёнными на диске, напорного диска, цапфы и вала.

Рабочая лопатка - литая, охлаждаемая с радиальным течением охлаждающего воздуха.

Во внутренней полости размещено 11 рядов по 5 штук в каждом цилиндрических штырьков - турбулизаторов, соединяющих спинку и корыто лопатки.

Периферийная бандажная полка обеспечивает уменьшение радиального зазора, что ведёт к повышению КПД турбины.

За счёт трения контактных поверхностей бандажных полок соседних рабочих лопаток происходит снижение уровня вибрационных напряжений.

Профильная часть лопатки отделена от замковой части полкой, формирующей границу газового потока и защищающую диск от перегрева.

Лопатка имеет замок типа «ёлочка».

Отливка лопатки выполняется по выплавляемым моделям с поверхностным, модифицированием алюминатом кобальта, улучшающим структуру материала измельчением зёрен за счёт формирования центров кристаллизации на поверхности лопатки.

Наружные поверхности пера, бандажной и замковой полок с целью повышения жаростойкости подвергаются шликерному алюмосицилированию с толщиной покрытия 0,02-0,04.

Для осевой фиксации лопаток от перемещения против потока на ней выполнен зуб, упирающийся в обод диска.

Для осевой фиксации лопатки от перемещения по потоку в замковой части лопатки в районе полки выполнен паз, в который входит разрезное кольцо с замком, удерживаемое от осевого перемещения буртиком диска. При монтаже кольцо за счёт наличия выреза, обжимается и вводится в пазы лопаток, а бурт диска входит в паз кольца.

Закрепление разрезного кольца в рабочем состоянии выполнено замком с фиксаторами, отгибаемыми на замок и проходящими через отверстия в замке и прорези в буртике диска.

Диск турбины - штампованный, с последующей механической обработкой. В периферийной зоне для размещения лопаток выполнены пазы типа «Ёлочка» и наклонные отверстия подвода охлаждающего воздуха.

На полотне диска выполнены кольцевые буртики, на которых размещены крышки лабиринтов и напорный диск-лабиринт. Фиксация этих деталей осуществлена штифтами. Для предотвращения выпадения штифтов отверстия развальцовываются.

Напорный диск, имеющий лопатки, нужен для поджатия воздуха, поступающего на охлаждение лопаток турбины. Для балансировки ротора на напорном диске закреплены пластинчатыми фиксаторами балансировочные грузы.

На ступице диска также выполнены кольцевые буртики. На левом буртики установлены крышки лабиринтов, на правом буртике устанавливается цапфа.

Цапфа предназначена для опирания ротора низкого давления на роликовый подшипник и передачи крутящего момента от диска на вал.

Для соединения диска с цапфой на ней в периферийной части выполнен вильчатый фланец, по которому осуществляется центрирование. Кроме того, центрирование и передача нагрузок идут по радиальным штифтам, удерживаемым от выпадения лабиринтом.

На цапфе ТНД также закреплено кольцо лабиринтного уплотнения.

На периферийной цилиндрической части цапфы справа размещено торцевое контактное уплотнение, а слева - втулка радиально-торцевого контактного уплотнения. Втулка отцентрирована по цилиндрической части цапфы, в осевом направлении зафиксирована отгибкой гребешка.

В левой части цапфы на цилиндрической поверхности размещены втулки подвода масла к подшипнику, внутреннее кольцо подшипника и детали уплотнения. Пакет этих деталей стянут корончатой гайкой, законтренной пластинчатым замком. На внутренней поверхности цапфы выполнены шлицы, обеспечивающие передачу крутящего момента от цапфы на вал. В теле цапфы выполнены отверстия подвода масла к подшипникам.

В правой части цапфы, на внешней проточке, гайкой закреплено внутреннее кольцо роликового подшипника опоры турбины. Корончатая гайка законтрена пластинчатым замком.

Вал турбины низкого давления состоит из 3-х частей, соединённых друг с другом радиальными штифтами. Правая часть вала своими шлицами входит в ответные шлицы цапфы, получая от неё крутящий момент.

Осевые силы с цапфы на вал передаются гайкой, навёрнутой на резьбовой хвостовик вала. Гайка законтрена от отворачивания шлицевой втулкой. Торцевые шлицы втулки входят в торцевые прорези вала, а шлицы на цилиндрической части втулки входят в продольные шлицы гайки. В осевом направлении шлицевая втулка зафиксирована регулировочным и разрезным кольцами.

На наружной поверхности правой части вала радиальными штифтами закреплён лабиринт. На внутренней поверхности вала радиальными штифтами закреплена шлицевая втулка привода насоса откачки масла от опоры турбины.

В левой части вала выполнены шлицы, передающие крутящий момент на рессору и далее на ротор компрессора низкого давления. На внутренней поверхности левой части вала нарезана резьба, в которую ввёрнута гайка, законтренная осевым штифтом. В гайку вворачивается болт, стягивающий ротор компрессора низкого давления и ротор турбины низкого давления.

На наружной поверхности левой части вала размещено радиально-торцевое контактное уплотнение, дистанционная втулка и роликовый подшипник конической шестерни. Все эти детали стянуты корончатой гайкой.

Составная конструкция вала позволяет повысить его жёсткость за счёт увеличенного диаметра средней части, а также снизить вес - средняя часть вала выполнена из титанового сплава.

Статор турбины низкого давления

Статор состоит наружного корпуса, блоков лопаток соплового аппарата, внутреннего корпуса.

Наружный корпус - сварная конструкция, состоящая из конической оболочки и фланцев, по которым корпус стыкуется с корпусом турбины высокого давления и корпусом опоры. Снаружи к корпусу приварен экран, образующий канал подвода охлаждающего воздуха. Внутри выполнены буртики, по которым центрируется сопловой аппарат.

В районе правого фланца установлен буртик, на котором установлены и радиальными штифтами зафиксированы вставки ТНД с сотами.

Лопатки соплового аппарата с целью увеличения жесткости в одиннадцать трехлапаточных блоков.

Каждая лопатка - литая, пустотелая, охлаждаемая с внутренними дефлекторами. Перо, наружная и внутренние полки образуют проточную часть. Наружные полки лопатки имеют буртики, которыми они центрируются по проточкам наружного корпуса.

Осевая фиксация блоков сопловых лопаток осуществляется разрезным кольцом. Окружная фиксация лопаток осуществляется выступами корпуса, входящими в прорези, выполненные в наружных полках.

Наружная поверхность полок и профильной части лопаток с целью повышения жаростойкости алюмосицилируется. Толщина защитного слоя 0,02-0,08 мм.

Для снижения перетекания газа между блоками лопаток в прорези устанавливаются уплотнительные пластины.

Внутренние полки лопаток оканчиваются сферическими цапфами, по которым центрируется внутренний корпус, представляющий сварную конструкцию.

В ребрах внутреннего корпуса выполнены проточки, которые с радиальным зазором входят в гребешки внутренних полок сопловых лопаток. Этот радиальный зазор обеспечивает свободу теплового расширения лопаток.

Опора турбины НД

Опора турбины состоит из корпуса опоры и корпуса подшипника.

Корпус опоры представляет собой сварную конструкцию, состоящую из оболочек, соединенных стойками. Стойки и оболочки защищены от газового потока клепаными экранами. На фланцах внутренней оболочки опоры закреплены конические диафрагмы, поддерживающие корпус подшипника. На этих фланцах слева закреплена втулка лабиринтного уплотнения, а справа - экран, защищающий опору от газового потока.

На фланцах корпуса подшипника слева закреплена втулка контактного уплотнения. Справа винтами закреплены крышка масляной полости и теплозащитный экран.

Во внутренней расточке корпуса помещен роликовый подшипник. Между корпусом и наружным кольцом подшипника находятся упругое кольцо и втулки. В кольце выполнены радиальные отверстия, через которые при колебаниях роторов прокачивается масло, на что рассеивается энергия.

Осевая фиксация колец осуществляется крышкой, притянутой к опоре подшипника винтами. В полости под теплозащитным экраном размещен откачивающий масляный насос и форсунки масляной с трубопроводами. В корпусе подшипника выполнены отверстия, подводящие масло к демпферу и форсунками.

Охлаждение турбины

Система охлаждения турбины - воздушная, открытая, регулируемая за счет дискретного изменения расхода воздуха, идущего через воздухо-воздушный теплообменник.

Входные кромки лопаток соплового аппарата турбины высокого давления имеют конвективно-пленочное охлаждение вторичным воздухом. Вторичным же воздухом охлаждаются полки этого соплового аппарата.

Задние полоски лопаток СА, диск и рабочие лопатки ТНД, корпуса турбин, лопатки СА турбины вентилятора и ее диск с левой стороны охлаждаются воздухом, проходящим через воздухо-воздушный теплообменник (ВВТ).

Вторичный воздух через отверстия в корпусе камеры сгорания поступают в теплообменник, там охлаждаются на - 150-220 К и через клапанный аппарат идет на охлаждение деталей турбин.

Воздух второго контура через стойки опоры и отверстия подводится к напорному диску, который, увеличивая давление, обеспечивает подачу его в рабочие лопатки ТНД.

Корпус турбины снаружи охлаждается воздухом второго контура, а изнутри - воздухом из ВВТ.

Охлаждение турбины осуществляется на всех режимах работы двигателя. Схема охлаждения турбины представлена на рис 1.1.

Силовые потоки в турбине

Инерционные силы с рабочих лопаток через замки типа «Ёлочка» передаются на диск и нагружают его. Неуравновешенные инерционные силы облопаченных дисков через призонные болты на роторе ТВД и через центрирующие буртики и радиальные штифты на роторе ТВД передаются на вал и цапфы, опирающиеся на подшипники. С подшипников радиальные нагрузки передаются на детали статора.

Осевые составляющие газовых сил, возникающих на рабочих лопатках ТВД, за счет сил трения по поверхностям контактов в замке и упором «зубом» лопатки в диск передаются на диск. На диске эти силы суммируются с осевыми силами, возникающими из-за перепада давления на нем и через призонные болты передаются на вал. Призонные болты от этой силы работают на растяжение. Осевая сила ротора турбины суммируется с осевой.

Наружный контур

Наружный контур предназначен для перепуска за ТНД части потока воздуха, сжатого в КНД.

Конструктивно наружный контур представляет собой два (передний и задний) профилированных корпуса, являющихся внешней оболочкой изделия и используемых также для крепления коммуникаций и агрегатов. Корпуса наружного корпуса изготовлены из титанового сплава. Корпус входит в силовую схему изделия, воспринимает крутящий момент роторов и частично вес внутреннего контура, а также усилия перегрузок при эволюциях объекта.

Передний корпус наружного контура имеет горизонтальный разъем для обеспечения доступа к КВД, КС и турбине.

Профилирование проточной части наружного контура обеспечено установкой в переднем корпусе наружного контура внутреннего экрана, связанного с ним радиальным стрингерами, одновременно являющимися и ребрами жесткости переднего корпуса.

Задний корпус наружного контура представляет собой цилиндрическую оболочку, ограниченную передним и задним фланцами. На заднем корпусе с внешней стороны расположены стрингера жесткости. На корпусах наружного корпуса расположены фланцы:

· Для отбора воздуха их внутреннего контура изделия за 4 и 7 ступенями КВД, а также из канала наружного контура для нужд объекта;

· Для запальных устройств КС;

· Для окон осмотра лопаток КВД, окон осмотра КС и окон осмотра турбины;

· Для коммуникаций подвода и отвода масла к опоре турбины, суфлировании воздушной и масляной полости задней опоры;

· Отбора воздуха в пневмоцилиндры реактивного сопла (РС);

· Для крепления рычага обратной связи системы управления НА КВД;

· Для коммуникаций подвода топлива в КС, а также для коммуникаций отбора воздуха за КВД в топливную систему изделия.

На корпусе наружного контура также спроектированы бобышки для крепления:

· Распределителя топлива; топливо-масляных теплообмнников маслобака;

· Топливного фильтра;

· Редуктора автоматики КНД;

· Сливного бачка;

· Агрегата зажигания, коммуникаций систем запуска ФК;

· Шпангоуты с узлами крепления регулятора сопла и форсажа (РСФ).

В проточной части наружного контура установлены двухшарнирные элементы коммуникаций системы изделия, компенсирующие температурные расширения в осевом направлении корпусов наружного и внутреннего контуров при работе изделия. Расширение корпусов в радиальном направлении компенсируется перемешением двухшарнирных элементов, конструктивно выполненных по схеме «поршень-цилиндр».

2. Расчет на прочность диска рабочего колеса турбины

2.1 Расчетная схема и исходные данные

Графическое изображение диска рабочего колеса ТВД и расчетной модели диска показаны на рис.2.1.Геометрические размеры представлены в таблице 2.1. Детальный расчет представлен в Приложении 1.

Таблица 2.1

Сечение i

n - число оборотов диска на расчетном режиме равно 12430 об/мин. Диск выполнен из материала ЭП742-ИД. Температура по радиусу диска непостоянна. - лопаточная (контурная) нагрузка, имитирующая действие на диск центробежных сил лопаток и их замковых соединений (хвостовиков лопаток и выступов диска) на расчетном режиме.

Характеристики материала диска (плотность, модуль упругости, коэффициент Пуассона, коэффициент линейного расширения, длительная прочность). При вводе характеристик материалов рекомендуется воспользоваться готовыми данными из включенного в программу архива материалов.

Расчет контурной нагрузки производится по формуле:

Сумма центробежных сил перьев лопаток,

Сумма центробежных сил замковых соединений (хвостовиков лопаток и выступов дисков),

Площадь периферийной цилиндрической поверхности диска, через которую передаются на диск центробежные силы и:

Силы, рассчитываются по формулам

z- число лопаток,

Площадь корневого сечения пера лопатки,

Напряжение в корневом сечении пера лопатки, создаваемое центробежными силами. Расчет этого напряжения был произведен в разделе 2.

Масса кольца, образованного замковыми соединениями лопаток с диском,

Радиус инерции кольца замковых соединений,

щ - угловая скорость вращения диска на расчетном режиме, рассчитываемая через обороты следующим образом: ,

Масса кольца и радиус рассчитываются по формулам:

Площадь периферийной цилиндрической поверхности диска рассчитывается по формуле 4.2.

Подставляя исходные данные в формулу для указанных выше параметров, получим:

Расчет диска на прочность производится по программе DI.EXE, имеющаяся в компьютерном классе 203 кафедры.

Следует иметь ввиду, что геометрические размеры диска (радиусы и толщины) вводятся в программу DI.EXE в сантиметрах, а контурная нагрузка - в (перевод).

2.2 Результаты расчета

Результаты расчета представлены в таблице 2.2.

Таблица 2.2

В первых столбцах таблицы 2.2 представлены исходные данные по геометрии диска и распределению температуры по радиусу диска. В столбцах 5-9 представлены результаты расчета: напряжения радиальные (рад.) и окружные (окр.), запасы по эквивалентному напряжению (экв. напр.) и разрушающим оборотам (цил. сеч.), а также удлинения диска под действием центробежных сил и температурных расширениях на разных радиусах.

Наименьший запас прочности по эквивалентному напряжению получен в основании диска. Допустимое значение . Условие прочностивыполняется.

Наименьший запас прочности по разрушающим оборотам получен так же в основании диска. Допускаемое значение . Условие прочностивыполняется.

Рис. 2.2 Распределение напряжения (рад. и окр.) по радиусу диска

Рис. 2.3 Распределение запаса прочности (запасы по эквив. напряжению) по радиусу диска

Рис. 2.4 Распределение запаса прочности по разрушающим оборотам

Рис. 2.5 Распределение температуры, напряжения (рад. и окр.) по радиусу диска

Литература

1. Хронин Д.В., Вьюнов С.А. и др. «Конструкция и проектирование авиационных газотурбинных двигателей». - М, Машиностроение, 1989.

2. «Газотурбинные двигатели», А.А. Иноземцев, В.Л. Сандрацкий, ОАО «Авиадвигатель», г. Пермь, 2006г.

3. Лебедев С.Г. Курсовой проект по дисциплине «Теория и расчет авиационных лопаточных машин», - М, МАИ, 2009.

4. Перель Л.Я., Филатов А.А. Подшипники качения. Справочник. - М, Машиностроение, 1992.

5. Программа DISK-MAI, разработанная на кафедре 203 МАИ, 1993.

6. Иноземцев А.А., Нихамкин М.А., Сандрацкий В.Л. «Газотурбинные двигатели. Динамика и прочность авиационных двигателей и энергетических установок». - М, Машиностроение, 2007.

7. ГОСТ 2.105 - 95.

Размещено на Allbest.ru

...

Подобные документы

    Термогазодинамический расчет двигателя, выбор и обоснование параметров. Согласование параметров компрессора и турбины. Газодинамический расчет турбины и профилирование лопаток РК первой ступени турбины на ЭВМ. Расчет замка лопатки турбины на прочность.

    дипломная работа , добавлен 12.03.2012

    Термогазодинамический расчет двигателя. Согласование работы компрессора и турбины. Газодинамический расчет осевой турбины на ЭВМ. Профилирование рабочих лопаток турбины высокого давления. Описание конструкции двигателя, расчет на прочность диска турбины.

    дипломная работа , добавлен 22.01.2012

    Термогазадинамический расчет двигателя, профилирование лопаток рабочих колес первой ступени турбины. Газодинамический расчет турбины ТРДД и разработка ее конструкции. Разработка плана обработки конической шестерни. Анализ экономичности двигателя.

    дипломная работа , добавлен 22.01.2012

    Проектирование проточной части авиационного газотурбинного двигателя. Расчёт на прочность рабочей лопатки, диска турбины, узла крепления и камеры сгорания. Технологический процесс изготовления фланца, описание и подсчет режимов обработки для операций.

    дипломная работа , добавлен 22.01.2012

    Описание конструкции двигателя. Термогазодинамический расчет турбореактивного двухконтурного двигателя. Расчет на прочность и устойчивость диска компрессора, корпусов камеры сгорания и замка лопатки первой ступени компрессора высокого давления.

    курсовая работа , добавлен 08.03.2011

    Расчет на длительную статическую прочность элементов авиационного турбореактивного двигателя р-95Ш. Расчет рабочей лопатки и диска первой ступени компрессора низкого давления на прочность. Обоснование конструкции на основании патентного исследования.

    курсовая работа , добавлен 07.08.2013

    Проектирование рабочего процесса газотурбинных двигателей и особенности газодинамического расчета узлов: компрессора и турбины. Элементы термогазодинамического расчета двухвального термореактивного двигателя. Компрессоры высокого и низкого давления.

    контрольная работа , добавлен 24.12.2010

    Расчет на прочность элементов первой ступени компрессора высокого давления турбореактивного двухконтурного двигателя со смешением потоков для боевого истребителя. Расчет припусков на обработку для наружных, внутренних и торцевых поверхностей вращения.

    дипломная работа , добавлен 07.06.2012

    Согласование параметров компрессора и турбины и ее газодинамический расчет на ЭВМ. Профилирование лопатки рабочего колеса и расчет его на прочность. Схема процесса, проведение токарной, фрезерной и сверлильной операций, анализ экономичности двигателя.

    дипломная работа , добавлен 08.03.2011

    Определение работы расширения (располагаемый теплоперепад в турбине). Расчет процесса в сопловом аппарате, относительная скорость при входе в РЛ. Расчет на прочность хвостовика, изгиб зуба. Описание турбины приводного ГТД, выбор материала деталей.

Дымит двигатель