Определяется октановое число бензина. Что такое октановое число

Октановое число

Указание октановых чисел на американской АЗС.

Окта́новое число́ - показатель, характеризующий детонационную стойкость топлива (способность топлива противостоять самовоспламенению при сжатии) для двигателей внутреннего сгорания . Число равно содержанию (в процентах по объёму) изооктана (2,2,4-триметилпентана) в его смеси с н -гептаном , при котором эта смесь эквивалентна по детонационной стойкости исследуемому топливу в стандартных условиях испытаний.

Изооктан трудно окисляется даже при высоких степенях сжатия , и его детонационная стойкость условно принята за 100 единиц. Сгорание в двигателе н -гептана даже при невысоких степенях сжатия сопровождается детонацией , поэтому его детонационная стойкость принята за 0. Для бензинов с октановым числом выше 100 создана условная шкала, в которой используют изооктан с добавлением различных количеств тетраэтилсвинца .

Характерный металлический звон при детонации создаётся детонационной волной, многократно отражающейся от стенок цилиндра. При детонации снижается мощность двигателя и ускоряется его износ.

Испытание топлива

Испытания на детонационную стойкость проводят или на полноразмерном автомобильном двигателе, или на специальных установках с одноцилиндровым двигателем. На полноразмерных двигателях при стендовых испытаниях определяют т. н. фактическое октановое число (ФОЧ), а в дорожных условиях - дорожное октановое число (ДОЧ). На специальных установках с одноцилиндровым двигателем определение октанового числа принято проводить в двух режимах: более жёсткий (моторный метод) и менее жёсткий (исследовательский метод). Октановое число топлива, установленное исследовательским методом, как правило, несколько выше, чем октановое число, установленное моторным методом. Точность определения октанового числа, более правильно именуемая воспроизводимостью , составляет единицу. Это означает, что бензин с октановым числом 93 может показать на другой установке при соблюдении всех требований метода определения октанового числа (ASTM D2699, ASTM D2700, EN 25163, ISO 5163, ISO 5164, ГОСТ 511 , ГОСТ 8226) совсем другую величину, например 92. Существенным является то, что обе величины, 93 и 92, являются и точными, и правильными и при этом относятся к одному и тому же образцу топлива.

Виды октановых чисел: ОЧИ и ОЧМ

Исследовательское октановое число (ОЧИ) определяется на одноцилиндровой установке с переменной степенью сжатия , называемой УИТ-65 или УИТ-85, при частоте вращения коленчатого вала 600 об/мин, температуре всасываемого воздуха 52°С и угле опережения зажигания 13 град. Оно показывает, как ведёт себя бензин в режимах малых и средних нагрузок.

Моторное октановое число (ОЧМ) определяется так же на одноцилиндровой установке, при частоте вращения коленчатого вала 900 об/мин, температуре всасываемой смеси 149°С и переменном угле опережения зажигания. ОЧМ имеет более низкие значения, чем ОЧИ. ОЧМ характеризует поведение бензина на режимах больших нагрузок. Оказывает влияние на высокую скорость и детонацию при частичном дроссельном ускорении и работе двигателя под нагрузкой, движении в гору и т. д.

По крайней мере в 1950-х годах использовалось также октановое число по температурному методу .

Значения октанового числа углеводородов и различных видов топлива

Вещество ОЧМ ОЧИ
Метан 110,0 107,5
Пропан 100,0 105,7
н -бутан 91,0 93,6
Изобутан 99,0 101,1
н -пентан 61,7 61,7
Изопентан (2-метилбутан) 90,3 92,3
Изогексан (2,2-диметилбутан) 93,4 91,8
2,2,3-Триметилбутан 101,0 105,0
н -Гептан 0 0
Изооктан (2,2,4-триметилпентан) 100 100
1-Пентен 77,1 90,9
2-Метил-1-бутен 81,9 101,3
2-Метил-2-бутен 84,7 97,3
Метилциклопентан 80,0 91,3
Циклогексан 77,2 83,0
Бензол 111,6 113,0
Толуол 102,1 115,7
Бензины прямой перегонки 41-56 43-58
Бензины термического крекинга 65-70 70-75
Бензины каталитического крекинга 75-81 80-85
Бензины каталитического риформинга 77-86 83-97
Бензин Н-80((ОЧИ+ОЧМ)/2)) 76 84
Бензин АИ-92 83,5 92
Полимербензин 85 100
Алкилат 90 92
Алкилбензол 100 107
Этанол 100 105
Метил-трет -бутиловый эфир - 117

Разность между ОЧИ и ОЧМ характеризует чувствительность топлива к режиму работы двигателя.

Распределение октанового числа

Поскольку при эксплуатации полноразмерного двигателя при переменных режимах происходит фракционирование бензина, необходимо раздельно оценивать детонационную стойкость его различных фракций. Октановое число бензина, с учётом его фракционирования в двигателе, получило название «распределение октанового числа» (ОЧР). В связи со сложностью определения октанового числа на двигателях, разработаны методы косвенной оценки детонационной стойкости по физико-химическим показателям и характеристикам низкотемпературной реакции газофазного окисления, имитирующего предпламенные процессы.

Углеводороды , которые содержатся в топливах, значительно различаются по детонационной стойкости: наибольшее октановое число имеют ароматические углеводороды и парафиновые углеводороды (алканы) разветвлённого строения, наименьшее октановое число имеют парафиновые углеводороды нормального строения. Топлива нефтяного происхождения, полученные каталитическим риформингом и крекингом , имеют более высокие октановые числа, чем полученные при прямой перегонке.

Для повышения октанового числа топлив используются высокооктановые компоненты и антидетонационные присадки . Многие из них (например, МТБЭ) испаряются легче, чем бензин, что приводит к интересному эффекту у машин с негерметичным бензобаком - по мере расходования топлива и испарения присадки октановое число бензина, оставшегося в баке, уменьшается на несколько единиц. Это приводит к лёгкому звону при полной мощности мотора (если он не оборудован датчиком детонации). Подавляющее большинство современных инжекторных двигателей имеют датчики детонации, позволяющие использовать любой бензин с октановым числом 91-98, для двигателей с высокой степенью сжатия может быть необходимо использовать бензин с октановым числом не ниже 95 или даже 98.

ОКТАНОВОЕ ЧИСЛО –мера детонационной стойкости бензина и моторных масел.

Во всем мире производится и потребляется огромное количество бензина – как автомобильное топливо. Чтобы бензин сгорал в цилиндрах автомобиля «правильно», он должен обладать рядом свойств. Одно из важнейших – октановое число. Именно оно написано на всех бензозаправках, и от него зависит качество и цена бензина. Когда из выхлопной трубы валит черный дым, а двигатель издает резкие звуки, это означает, что бензин в цилиндрах вместо сгорания с положенной ему скоростью 15–60 м/с начинает взрываться – детонировать со скоростью 2000–2500 м/с (см . ВЗРЫВЧАТЫЕ ВЕЩЕСТВА). Детонационная волна многократно отражается от стенок цилиндра, создавая неприятный звук, резко снижая мощность двигателя и ускоряя его износ.

Причина детонации – выделение энергии при повышенном образовании гидропероксидов ROOH в парах бензина при их окислении кислородом воздуха (см . ПЕРОКСИДЫ). Если концентрация гидропероксидов превысит некоторый предел, произойдет их взрывной распад. Взрыв пероксидов протекает по механизму разветвленно-цепных реакций (см . ЦЕПНЫЕ РЕАКЦИИ). Для повышения детонационной стойкости есть два пути. Первый – повысить в составе бензина долю разветвленных и ароматических соединений. Второй – ввести в топливо небольшие количества специальных добавок. Обычно используют оба пути.

Чтобы определить антидетонационные свойства полученной смеси, в 1930-х была предложена специальная шкала, в соответствии с которой стойкость данного бензина к детонации сравнивается со стойкостью стандартных смесей. В качестве стандартов были выбраны два вещества: гептан нормального строения и один из изомеров октана – 2,2,4,-триметилпентан (его называют «изооктаном»). Смесь паров гептана с воздухом при сильном сжатии легко детонирует, поэтому качество гептана как топлива считается нулевым. Изооктан, будучи разветвленным углеводородом, устойчив к детонации, и его качество принимают равным 100. Октановое число определяют так. Готовят смесь из нормального гептана и изооктана, которая по своим характеристикам эквивалентна испытуемому бензину. Процентное содержание изооктана в этой смеси и есть октановое число бензина. Существуют горючие жидкости с более высокими антидетонационными характеристиками, чем изооктан. Добавки таких жидкостей позволяют получить бензин с октановым числом более 100. Для оценки октанового числа выше 100 создана условная шкала, в которой используют изооктан с добавлением различных количеств тетраэтилсвинца Pb(C 2 H 5) 4 . Известно, что это вещество уже в очень малых концентрациях значительно повышает октановое число бензина. Зная, сколько тетраэтилсвинца надо добавить в бензин, чтобы повысить его октановое число на одну единицу, несложно приготовить из изооктана стандартные смеси с октановым числом 101, 102 и т.д.

Октановое число определяют разными способами. Для автомобильных бензинов применяют два метода – моторный и исследовательский. В первом случае моделируют работу двигателя в условиях больших нагрузок (движение по шоссе с высокой скоростью), во втором – в городских условиях (скорость движения невелика и происходят частые остановки). Буква «И» в марке бензина АИ-93 как раз и означает, что октановое число этого бензина получено исследовательским методом. А если указано, что октановое число бензина равно просто 76, то это означает, что оно получено моторным методом.

Роль строения углеводорода наглядно видна из таблицы, в которой приведены октановые числа некоторых чистых химических соединений, полученные моторным методом:

Видно, что повышению октанового числа способствуют разветвление цепи, введение двойной связи и появление ароматического кольца. Например, если в результате изомеризации нормального гексана (процесс идет в присутствии катализатора) получить смесь разветвленных изомеров этого углеводорода:

н -C 6 H 14 ® (CH 3) 2 CHCH(CH 3) 2 + (CH 3) 2 CHCH 2 CH 2 CH 3 + CH 3 CH(C 2 H 5) 2 , то октановое октановое число смеси повысится сразу на 20 единиц.

Бензин, получаемый из нефти простой перегонкой (такой бензин называется прямогонным), имеет низкое октановое число – в пределах 41–56, поэтому сейчас такой бензин не используется. Для повышения октанового числа используют более современные методы переработки нефти (термический и каталитический крекинг, риформинг). Термический крекинг (от английского cracking – расщепление) производят нагреванием нефти до 450–550 о С под давлением в несколько атмосфер. При этом молекулы тяжелых углеводородов, которых много в сырой нефти, расщепляются до более коротких, среди которых много непредельных. Первую в мире установку по крекингу жидкой нефти запатентовали российские инженеры В.Г.Шухов и С.Гаврилов (модель этой установки, сделанная по подлинному чертежу патента, полученного Шуховым в 1891, находится в Политехническом музее в Москве). У бензина термического крекинга октановое число повышается до 65–70. В ходе каталитического крекинга процесс ведут в присутствии алюмосиликатного катализатора. У бензина каталитического крекинга октановое число повышается до 75–81. Риформинг (от английского reform – преобразовывать, улучшать) проводят в присутствии катализаторов, способствующих ароматизации насыщенных углеводородов и повышающих долю ароматических углеводородов с 10 до 60%. Раньше в качестве катализаторов применяли оксиды молибдена и алюминия, сейчас используют катализаторы, содержащие платину (поэтому такой процесс называют платформингом). У бензина, получаемого путем каталитического риформинга, октановое число еще выше и равно 77–86.

Для повышения октанового числа в бензин вводят также так называемые высокооктановые компоненты. К ним относятся ароматические углеводороды с короткой разветвленной боковой цепью, например, кумол С 6 Н 5 СН(СН 3) 2 . Другая добавка – так называемый алкилат (алкилбензин), смесь насыщенных углеводородов изостроения, получаемая алкилированием изобутана непредельными углеводородами – алкенами, в основном бутиленами. В результате образуется смесь изооктанов:

СН 3 СН(СН 3) 2 + СН 3 СН=СНСН 3 ® СН 3 С(СН 3) 2 СН(СН 3)СН 2 СН 3 (2,2,3-триметилпентан); СН 3 СН(СН 3) 2 + (СН 3) 2 С=СН 2 ® СН 3 С(СН 3) 2 СН 2 СН(СН 3) 2 (2,2,4-триметилпентан). Алкилат имеет октановое число не менее 90–91,5. Очень эффективно введение в бензин добавки метил-трет -бутилового эфира СН 3 –О–С(СН 3) 3 – нетоксичной жидкости с октановым числом 117; в бензин можно добавлять до 11% этого вещества без снижения его эксплуатационных характеристик. Таким образом, современный автомобильный бензин – это сложная смесь углеводородов, полученных в различных процессах переработки нефти, и специальных добавок.

Чтобы повысить октановое число бензина, широко используют и второй метод: добавляют в него специальные вещества – антидетонаторы. Самым первым из них был сравнительно недорогой и очень эффективный тетраэтилсвинец – бесцветная токсичная жидкость. При высокой температуре в молекулах этого соединения легко рвутся связи Pb–C, с образованием этильных радикалов (см . СВОБОДНЫЕ РАДИКАЛЫ):

Pb(C 2 H 5) 4 = Pb + 4C 2 H 5 . Атомы свинца легко окисляются кислородом до оксидов свинца (в зависимости от температуры образуются смеси PbO и PbO 2), а диоксид эффективно разрушает гидропероксиды с образованием малоактивных соединений – альдегидов, спиртов и др., например: 2RCH 2 COOH + 2PbO 2 ® 2RCHO + 2PbO + O 2 . Чтобы образовавшиеся при сгорании тетраэтилсвинца оксиды свинца не отлагались на внутренних деталях двигателя, в бензин одновременно вводят специальный «выноситель» свинца (0,3–0,4%), обычно это этилбромид C 2 H 5 Br и дибромпропан C 3 H 6 Br 2 . Тогда свинец выносится вместе с выхлопными газами в виде бромида PbBr 2 . Смесь тетраэтилсвинца с этилбромидом называется этиловой жидкостью, а бензин с такой добавкой называется этилированным (чтобы отличить этилированный бензин от обычного, его окрашивают). Добавка всего 0,1% тетраэтилсвинца может повысить октановое число бензина на 10 единиц. В авиационные бензины добавляют до 0,3% тетраэтилсвинца. Однако это соединение высокотоксично: предельно допустимая концентрация его паров в воздухе равна всего 0,005 мг/м 3 – намного меньше, чем у хлора. Кроме того, ядовитые соединения свинца сильно загрязняют пришоссейные участки земли. Все это привело во многих странах к полному запрещению этилированного бензина в качестве автомобильного топлива или к значительному ограничению его применения.

Были разработаны и другие, менее токсичные антидетонаторы, например, трикарбонил(232-циклопентадиенил)марганец Mn(CO) 3 (C 5 H 5), димер карбонил(232-циклопентадиенил)никеля 2 , ферроцен Fe(C 5 H 5) 2 . К сожалению, эти антидетонаторы слишком дороги, а кроме того образуют твердый нагар на стенках цилиндров в значительно бóльших количествах, чем тетраэтилсвинец, так что работа в этой области продолжается.

Роль увеличения октанового числа можно проиллюстрировать на примере авиационного бензина во время Второй мировой войны. Эту войну часто называют «войной моторов». Моторы – это танки, самоходные пушки, самолеты. Для моторов необходимо топливо, и определенную роль в поражении Германии и ее союзников сыграла нехватка топлива. Менее известный, но не менее важный фактор – наличие у стран антигитлеровской коалиции лучшего по качеству бензина. У немцев и японцев октановое число авиационных бензинов не превышало 87–90, тогда как у их противников оно было не менее 100. Хотя разница может показаться небольшой, летчики оценили ее в полной мере: она позволила на 30% увеличить мощность авиационного двигателя при взлете и наборе высоты; на 20% снизить расход топлива и на столько же увеличить дальность полета, на 25% увеличить полезную нагрузку (а это бомбы, снаряды, дополнительное вооружение), на 10% увеличить максимальную скорость и на 12% – высоту полета. Как отметил британский министр Дэвид Ллойд Джордж, его страна не смогла бы выиграть в 1940 воздушную «битву за Британию», если бы у английских летчиков не было авиационного бензина марки «100».

Массовое производство «100-го» бензина началось в США в конце 1930-х, когда промышленность перешла на каталитический процесс переработки нефти, разработанный французским инженером Эженом Гудри. Он иммигрировал в США в 1930, а уже в июне 1936 начала работать полупромышленная установка Гудри производительностью 2000 баррелей в сутки (американский баррель для сырой нефти и нефтепродуктов равен 139 л). Успешная работа установки позволила уже через 10 месяцев ввести в действие полномасштабный завод мощностью 15 тыс. баррелей в сутки. Другие нефтяные компании также начали внедрять на своих предприятиях установки Гудри, и в 1939, в канун мировой войны, их суммарная производительность достигла 220 тыс. баррелей в сутки. В 1940 Гудри удалось существенно улучшить работу реакторов, заменив природные глины на более производительный синтетический алюмосиликатный катализатор. В результате «бензин Гудри» имел октановое число 82, тогда как ранее не удавалось получить более 72. Поэтому именно бензин, получаемый на установках Гудри, стал основой для получения нового высококачественного бензина (с неслыханным для того времени октановым числом, достигающим 100 и более) в широких масштабах.

Армейские чины США еще в 1934 заинтересовались бензином с октановым числом 100. Испытания показали, что он дает значительные преимущества и является стратегическим продуктом. Но этот бензин был в то время весьма дефицитным. Его получали, добавляя тетраэтилсвинец, изооктан, изопентан и другие компоненты к лучшим сортам авиационного бензина. Процесс Гудри позволил вдвое снизить количество дорогих добавок, необходимых для получения «бензина-100». Заслуги Гудри были оценены американским правительством: вскоре после вступления США в войну он стал гражданином этой страны. В 1941–1942 установки, работающие на основе процесса Гудри, давали 90% всего авиационного бензина стран антигитлеровской коалиции. К 1944 производительность установок была доведена до максимума – 373 тыс. баррелей в сутки.

Гудри получил множество патентов на каталитическую переработку нефти. До сих пор у специалистов-нефтехимиков в ходу термины «гудрифлоу», «удриформинг» и др.; в Англо-русском словаре по химии и переработке нефти приведено семь подобных терминов.

Илья Леенсон

Думаю, многие задаются этим вопросом на просторах бескрайних российских дорог. Какой все же бензин лучше лить в своего железного коня 92 или 95? Есть ли между ними критическая разница, и что будет, если вместо 95 использовать 92 бензин? Ведь он дешевле примерно на 5 – 10%, а соответственно с каждого бака будет идти реально экономия! НО стоит ли так поступать и не опасно ли это для вашего силового агрегата, разберем по полочкам, будет видеоверсия и голосование в конце …


В самом начале я предлагаю подумать, что такое эти цифры, 80, 92, 95, а в советские времена еще и 93? Никогда не задумывались? Тут все просто это октановое число. А тогда что это такое? Читаем дальше.

Октановое число бензина

Октановое число бензина – это показатель, характеризующий детонационную стойкость топлива, то есть величина способности топлива противостоять самовоспламенению при сжатии для двигателей внутреннего сгорания. То есть простыми словами, чем выше «октановый уровень» топлива, тем меньше вероятность самовоспламенения топлива при сжатии. При таком исследовании разграничивают уровни топлива по этому показателю. Исследования проводятся на одноцилиндровой установке с переменным уровнем сжатия топлива (называются они УИТ-65 или УИТ-85).

Работают установки при 600 об/мин, воздух и смесь 52 градуса Цельсия, и угол опережения зажигания составляет около 13 градусов. После таких испытаний выводят ОЧИ (октановое число исследовательское). Это исследование должно показать, как будет вести себя бензин при минимальных и средних нагрузках.

При максимальных нагрузках на топливо, существует другой эксперимент, который выводит (ОЧМ - октановое число моторное). Испытания проводятся на этой, одноцилиндровой, установке, только обороты 900 об/мин, температура воздуха и смеси 149 градусов Цельсия. ОЧМ имеет более низкое значение, чем ОЧИ. При эксперименте выводят уровень максимальных нагрузок, например при дроссельном ускорении или при движении в гору.

Теперь я думаю, хоть чуть стало понятно, что это такое. И как его определяют.

Теперь давайте вернемся к выбору - 92 или 95. Любой вид будь 92 или 95, и даже 80. При его переработке на заводе не имеет такое, конечное, октановое число. При прямой перегонки нефти, получается всего 42 – 58. То есть очень низкого качества. «Как же так» — спросите вы? Неужели нельзя перегонять сразу с высоким показателем? Можно, но это стоит очень дорого. Литр такого топлива стоил бы в несколько раз дороже существующих сейчас на рынке. Выработка такого топлива называется каталитический риформинг. Производят таким способом всего 40 – 50 % от общей массы и в основном в западных странах. В России таким способом производят гораздо меньше бензина. Вторая технология производства, которая менее затратная - называется каталитический крекинг или гидрокрекинг. Бензин при такой обработке имеет октановое число всего 82-85. Для того чтобы его привести в нужный показатель, в него нужно добавить специальные присадки.

Присадки в бензин

1) Присадки, основанные на металлосодержащих составах . Например, на тетраэтилсвинце. Условно их называют этилированные бензины. Очень эффективные, заставляют топливо работать, на всю, как говорится. Но и очень вредные. Как видно из названия тетраэтилсвинец, в составе есть метал – «свинец». При сгорании образует газообразные соединения свинца в воздухе, который очень вреден, оседает в легких, развивая сложные болезни, например «РАК». Поэтому такие типы сейчас запрещены во всем мире. В СССР существовала марка АИ – 93, он то, как раз базировался на тетраэтилсвинце. Условно можно назвать это топливо устаревшим и вредным.

2) Более совершенные и безопасные основаны на ферроцене, никеле, марганце, но чаще всего применяют монометиланилин (ММНА) , его октановое число достигает 278 пунктов. Эти присадки напрямую смешивают с бензином, доводя смесь до нужной консистенции. Но такие присадки также не идеальны, они образуют налет на поршнях, свечах, засоряют катализаторы и всевозможные датчики. Поэтому рано или поздно такое топливо закупорит двигатель, в прямом смысле слова.

3) Последние и самые совершенные - это эфиры и спирты . Самые экологические и не несут вред окружающей среде. Но есть и недостатки такого топлива, это низкое октановое число спиртов и эфиров, максимальное значение 120 пунктов. Поэтому в топливо требуется таких присадок довольно много около 10 – 20 %. Еще один недостаток, это агрессивность спиртовых и эфирных присадок, при большом содержании они быстрее разъедают резиновые и пластиковые патрубки и датчики. Поэтому такие присадки ограничивают в пределах 15 % от общего уровня топлива.

Степень сжатия и современный автомобиль

Собственно, почему я начал рассказывать с октанового числа и присадок, да потому что нужно учитывать самовоспламенения топлива или так называемую детонацию в современных агрегатах.

В дело в том, что производители чтобы увеличить мощность и снизить расход топлива, немного увеличивают степень сжатия в цилиндрах двигателя.

Вот немного полезной информации:

  • Для степени сжатия до 10,5 и ниже используют октановое число бензина АИ – 92 (не учитываем ТУРБО варианты моторов).
  • От отметки 10,5 до 12 – заливаем топливо не ниже АИ – 95!
  • Если степень сжатия 12 и выше, то рекомендуется заливать не ниже АИ – 98
  • Конечно, есть еще очень редкие бензины, такие как АИ – 102 и АИ – 109, для них степень сжатия 14 и 16 соответственно.

Так что же произойдет, В ТЕОРИИ , если мы зальем 92 бензин в мотор, который рассчитан на 95? ДА все просто, топливо от высокой степени сжатия будет самовоспламеняться, будут происходить «минивзрывы» — то есть будет проявляться разрушающий эффект детонации!

А чем опасна детонация? Да все просто, прогаром прокладки между головкой блока и самим блоком, разрушением колец (как компрессионных, так и маслосъемных), прогаром поршней и т.д.

НО это как я написал выше – ВСЕ ЭТО В ТЕОРИИ ! ОСОБЕННО У НАС В РОССИИ! Почему я это говорю. Многие производители поняли — что качественного бензина (а сейчас говорим про 95 вариант), найти если можно – ТО ОЧЕНЬ СЛОЖНО, даже в столичных регионах (я уже молчу о небольших городах). Зачастую бензин «бадяжат» так что октанового числа в 95 достичь нереально. Помню пару лет назад, читал статью с экспериментом — где в столице брали пробы с большого количества заправок, и только в 20 – 25% случаев бензин приближался к нормам, остальные были далеки от цифры 95 и даже 92. Только вдумайтесь! А как вы проверите качество сами? Правильно – НИКАК.

Так если залить такое некачественное топливо движок сразу накроется? Сразу? Не совсем так. Машины сейчас умные, и именно чтобы ваш мотор не пошел «в разнос» был придуман датчик детонации, он позволяет мотору работать с другим октановым числом. Он следит за механическими колебаниями блока двигателя, преобразует их в электрические импульсы и постоянно .

Если импульсы «выходят за рамки нормального состояния», то ЭБУ принимает решение о корректировании угла зажигания и качестве топливной смеси. Таким образом, современный мотор, рассчитанный на 95 бензин будет, спокойно работать даже на 92.

Однако! Такая работа будет успешной на низких и средних оборотах, на высоких оборотах (почти максимум), датчик детонации работает не так эффективно, поэтому «жарить» на низкооктановой смеси НЕЖЕЛАТЕЛЬНО!

Давайте подведем итог.

Что будет если залить 92 вместо 95?

По сути, разница между 92 и 95 бензином минимальна, всего «3 числа». Если выбудете заправляться в компании, которая вам гарантирует именно «жесткие показатели» то есть «92 это 92», а «95 это 95» и ВЫ В ЭТОМ БУДЕТЕ УВЕРЕНЫ. То разница будет проявлять для вашего мотора скорее на высоких оборотах, и не в значительной (до 2 — 3 %) потери мощности, также на этот процент вырастит расход топлива.

И что самое интересное, если вы не часто раскручиваете свой силовой агрегат до 5000 – 7000 оборотов, а передвигаетесь с 2000 до 4000, то 92 не доставит вам каких-либо негативных моментов. Все же электроника все отрегулирует сама.

Предрассудки - , такого нет. Прогорание клапанов, было характерно для этилированных типов, которые имели металлические присадки. Высокооктановые этилированные бензины могли нанести вред двигателю, настроенному на использование АИ-76 (причем у него не было электронной коррекции угла зажигания и впрыска топлива). Но сейчас такой опасности просто нет, потому что такое топливо уже давно запрещено.

НО В ИДЕАЛЕ! Нужно заправлять именно таким топливом, который рекомендует ваш изготовитель. Ведь если вдруг новый мотор, накроется, и выяснится что поломка связана с бензином, то вы попадаете на очень дорогостоящий ремонт, ПРИЧЕМ ЗА СВОЙ СЧЕТ. Экономия в 10% на бензине вам «вылезет боком».

Кандидат технических наук Лев Мачулин (г. Ухта)

Ни об одном показателе качества автомобильного бензина не ходит столько нелепых слухов и легенд, как об октановом числе. Слышали об этом числе и видели цифры на заправках 80-92-95-98 практически все, но что они означают, доподлинно известно немногим.

Томас Миджлей (1889-1944) - американский химик и механик, прославившийся открытием фреона и тетраэтилсвинца. Изобретатель первого электромеханического датчика детонации. Фото: Engineers Club of Dayton Foundation, Ohio, USA.

Первый испытательный двигатель компании Waukesha Motors (1929 г.). Фото: An Interna-tional Historic Mechanical Engineering Land-mark. The Waukesha CFR Fuel Research Engine / Waukesha Engine Division Dresser Industries Inc. - Bulletin No. 1163. - June 1980.

Октановые числа некоторых индивидуальных углеводородов по моторному методу (моторные октановые числа - ОЧМ).

Установка УИТ-85 - «рабочая лошадка» нефтезаводских лабораторий. Фото Льва Мачулина.

Многополосный ИК-спектрометр может определять октановое число только в руках профессионала. Фото Льва Мачулина.

Различия в условиях определения октанового числа по моторному и исследовательскому методам.

Несмотря на активную пропаганду альтернативных источников энергии, человечество продолжает потреблять автомобильный бензин с завидным аппетитом - в объёмах порядка миллиарда тонн в год. При этом горючее, заливаемое в бак автомобиля, должно соответствовать определённым требованиям качества. В противном случае двигатель не сможет продемонстрировать все свои возможности, а то и вовсе будет выведен из строя. Но что подразумевается под словами «качество бензина»? Раскрыв любой официальный документ, содержащий технические требования к качеству бензина, мы обнаружим таблицу с целым комплексом нормативов по более чем десятку параметров - испаряемости, плотности, окисляемости, содержанию различных компонентов, примесей и т. д. Причём требования эти большей частью совершенно идентичны для разных марок бензина. Иными словами, бензин, независимо от марки, должен быть чистым, прозрачным, обеспечивать лёгкость запуска мотора, не создавать в линиях подачи паровых пробок, не содержать откровенной отравы и давать в меру токсичный выхлоп. И лишь взгляд на верхнюю строку таблицы расставляет всё по местам.

Итак, основной показатель качества бензина, определяющий его марку (а попутно и ценовую категорию), - детонационная стойкость: способность воспламеняться и сгорать в цилиндрах двигателя без нежелательных взрывных процессов. Конечно, детонационное сгорание бензовоздушной смеси не способно разрушить двигатель наподобие тротиловой шашки. Но следует знать, что вместо положенных 20-40 м/с фронт пламени при детонации распространяется со скоростью 2000-2500 м/с, что сравнимо с классической взрывчаткой! Переход к столь ненормальному режиму сгорания обусловливается интенсификацией процессов предпламенного окисления паров бензина с образованием нестабильных органических перекисей, накопление которых выше определённого предела при некоторых условиях заканчивается самовоспламенением и взрывом. Вот тогда-то и начинаются самые действующие на нервы «звенящие» постукивания, последствия которых достаточно печальны - возникающие в двигателе гиперзвуковые ударные волны способны сдирать масляную плёнку со стенок гильзы, увеличивая износ цилиндра и поршневых колец. Повышается дымность выхлопа, возникает перегрев мотора и снижается его мощность, происходят местные разрушения камеры сгорания и поверхности поршня. Потому только детонационная стойкость - важнейшая характеристика бензина - при равенстве прочих параметров даёт ответ, можно ли заливать его в бак конкретной машины.

Спровоцировать детонацию может многое: неоправданное увеличение частоты оборотов двигателя, неправильный состав смеси, неверно отрегулированный угол опережения зажигания и т. д. Но всё это не относится к качеству бензина, да и мотор современного автомобиля спроектирован так, чтобы не создавать проблем на ровном месте. Основная же причина детонации - несоответствие детонационной стойкости бензина степени сжатия двигателя, то есть соотношению свободных объёмов его цилиндров в нижней и верхней мёртвых точках. Чем выше степень сжатия, тем эффективнее работает двигатель, тем бoльшую мощность можно получить с единицы объёма цилиндра. Поэтому степень сжатия у современных двигателей достаточно высокая. Но чем она выше, тем сильнее детонирует бензин!

Долгое время детонация была главным фактором, сдерживающим развитие бензиновых двигателей. И именно появление бензинов, устойчивых к детонации, способствовало стремительному рывку в области авиа- и автомобилестроения, фактически преобразившему мир. Располагая в середине 20-х годов ХХ века лишь тихоходными фанерными аэропланами и грузовиками-«полуторками», во Вторую мировую войну человечество вступило уже со скоростными цельнометаллическими самолётами, самоходной бронированной техникой и полностью обновлённым автопарком. И достигнут этот беспрецедентный рывок во многом благодаря успехам в борьбе с детонацией бензина, мерой устойчивости к которой является октановое число, с которым связано столько мифов.

Миф первый: октановое число характеризует содержание октана - наиболее ценного компонента бензина.

Самое нелепое заблуждение. Да, октан (нормальный насыщенный углеводород с брутто-формулой С8Н18) в небольших количествах и впрямь может присутствовать в бензине. Но боже упаси добавлять его туда специально! Вопреки распространённому мнению октановое число чистого октана умопомрачительно низко - оно даже ниже, чем у эталонного «антибустера» гептана, чье октановое число принято за ноль! То есть чем меньше октана в бензине, тем лучше. Но почему тогда число - октановое?

Напомним, что данный показатель отвечает не за состав, а за детонационную стойкость топлива. И называть его, по большому счёту, следовало бы не октановым, а изооктановым - ведь именно изооктан (по химической номенклатуре - 2,2,4-триметилпентан) принят в качестве эталона шкалы детонационной стойкости с номиналом в 100 пунктов. То есть если бензин детонирует так же, как смесь из 92 частей изооктана и 8 частей гептана, то говорят, что его октановое число равно 92. При этом самого изооктана в бензине может не быть. А уж октану там и вовсе делать нечего.

Миф второй: высокооктановый бензин горит быстрее и жарче, за счёт чего двигатель развивает бoльшую мощность.

Это не так. Напротив, высокооктановые бензины воспламеняются медленнее, чем низкооктановые, причём настолько, что в старых двигателях с небольшой степенью сжатия их применение вызывает прогар выпускных клапанов с проскоком пламени в глушитель. Так что не рассчитывайте поднять мощность мотора, заливая в бак бензин с избыточным октановым числом. Ничего хорошего из этого не выйдет. Кстати, именно по причине замедленного воспламенения высокооктановые бензины нормально сгорают в мощных двигателях с высокой степенью сжатия, в чём, собственно, и заключается их главная прелесть. Теплотворная же способность литра бензина больше зависит от его плотности.

Миф третий: октановое число не может быть больше 100.

Ещё как может! Чтобы правильно воспринять это странное заявление, поговорим немного о химии углеводородов - класса органических соединений, чьи молекулы состоят исключительно из атомов углерода и водорода. А бензин состоит именно из них.

Благодаря наличию у атомов углерода четырёхвалентных связей и их способности выстраивать цепочки соединения с участием этого элемента отличаются потрясающим разнообразием. То же касается и углеводородов - в них цепь атомов углерода может вытягиваться в линию, ветвиться, замыкаться в различного рода циклы. Добавим сюда возможность образовывать кратные связи, и станет понятно, что число возможных комбинаций атомов углерода и водорода практически неисчерпаемо. К счастью, состав бензина не настолько сложен - количество атомов углерода в содержащихся в нём углеводородах обычно не превышает десяти. Впрочем, и это даёт нам в итоге сотни и даже тысячи компонентов.

Так вот, выяснилось, что наиболее склонны к детонации углеводороды линейного строения (у химиков они именуются «нормальными»), которых традиционно много как в природном сырье, так и в прямогонных бензинах. Чем длиннее цепочка, тем ниже октановое число. Углеводороды, имеющие разветвлённое строение (они именуются изомерными), сопротивляются детонации гораздо лучше - неспроста эталоном детонационной стойкости признан упомянутый нами изооктан (по сути дела, пентан с тремя боковыми «отростками»). А что может быть лучше эталона?

Лучше оказались углеводороды с приятным названием «ароматические» (хотя пахнут они отнюдь не духами), имеющие в составе молекулы особый шестичленный цикл - бензольное кольцо. К ним относятся собственно бензол, а также его производные - метилбензол (толуол), этилбензол, диметилбензолы (ксилолы) и триметилбензолы (мезитилен, псевдокумол). Их октановые числа превышают 100. А ещё существуют особые присадки, также способные поднять октановое число бензина выше заветной сотни.

Чтобы идти в ногу со временем, нефтепереработчики создали сначала крекинг-процесс (увеличивающий выход бензина и его октановое число за счёт расщепления тяжёлых и линейных углеводородов), потом процесс риформинга (для наращивания октанового числа за счёт образования ароматических углеводородов). Да и производители присадок сложа руки не сидели. Казалось бы, для конструкторов настали золотые дни - повышай себе степень сжатия моторов и в ус не дуй. Но через некоторое время наступило отрезвление. Присадки отравили всё вокруг свинцом, а наращивать содержание ароматических углеводородов оказалось возможным только до определённого предела: начались проблемы как с их токсичностью, так и с банальным перегревом двигателей (в «ароматике» маловато водорода, и режим их горения довольно специфический). В результате степень сжатия моторов в 1980-х годах вынуждена была отыграть немного назад, а верхняя планка октанового числа на заправках так и не пробила потолок в 100 пунктов.

Миф четвёртый: октановое число можно измерить с помощью портативного прибора.

Мы не раз видели по телевизору, а некоторые и воочию, как приезжает на заправку фургончик передвижной лаборатории, из него выходит строгая тётенька в белом халате, раскрывает пластиковый чемоданчик, наливает бензин в какой-то прибор, пара нажатий кнопок, и - вуаля, получите предписание: «Ваш бензин не соответствует ГОСТу по октановому числу!» В этот момент вполне можно обвинить строгую тётеньку в профессиональной некомпетентности и… нарушении всё того же ГОСТа, вернее, технического регламента Евразийского союза, где чёрным по белому сказано, какими методами можно определять октановое число.

Октановое число относится к наиболее трудноопределяемым параметрам бензина. Стандартные арбитражные методы его количественной оценки предусматривают весьма затратные моторные испытания на стационарных стендовых установках, производящихся всего в четырёх странах мира (США, Россия, Германия, Китай) и недоступных массовому потребителю.

А началось всё в далеком 1882 году, когда внимание разработчиков первых бензиновых моторов привлёк тот факт, что на одном и том же двигателе, в одинаковых условиях бензины разного происхождения детонировали по-разному. Это наглядно показывало, что детонация зависит не только от двигателя, но и от свойств горючего. Так появилась новая характеристика топлива, получившая название детонационной стойкости (англ. knock resistance) и о которой мы уже рассказывали выше.

Впервые попытка её количественной оценки была предпринята в начале 1920-х годов английским инженером Гарри Рикардо из Royal Aircraft Establishment, известным конструктором автомобильных, танковых и авиационных двигателей. Им были созданы одноцилиндровые испытательные моторы с переменной степенью сжатия, для которых была разработана методика оценки детонационной стойкости по так называемой критической или наивысшей полезной степени сжатия, при которой начинается слышимая детонация. Метод этот в достаточной степени субъективен, однако принцип инициирования детонации с помощью увеличения степени сжатия оказался удачнее прочих (дросселирование, наддув, число оборотов, угол опережения зажигания, температурный режим и т. д.) и потому был использован в более поздних разработках.

В 1927 году с целью окончательного выбора пути количественной оценки склонности бензина к детонации в США был образован Кооперативный комитет по исследованию топлива (CFR), включивший представителей Американского института нефти, Ассоциации американских производителей, Национального бюро стандартов и Общества автомобильных инженеров. В том же году Джон Кэмпбелл из General Motors построил одноцилиндровый двигатель с переменной степенью сжатия, а Грэхем Эдгар из Ethyl Gasoline Corporation исследовал с его помощью образцы чистых углеводородов, включая нормальный гептан, выделенный им с помощью дистилляции смолы сосны Джеффри . В конечном итоге Эдгар пришел к выводу, что оптимальная пара в качестве эталонов - это упомянутые выше 2,2,4-триметилпентан и гептан - их детонационная стойкость радикально различалась, а температура кипения и летучесть были близки, что обеспечивало длительную сохранность готовых смесей.

Когда известный исследователь Томас А. Бойд из компании General Motors внёс в CFR предложение утвердить двигатель с переменной степенью сжатия в качестве основного средства для детонационных испытаний бензина, некоторые члены комитета высказали опасения, что такой двигатель будет слишком сложен для массового использования. Однако моторостроительная фирма Waukesha Engine Company из штата Висконсин (США) добровольно вызвалась построить прототип. Заказ комитета был выполнен за 45 дней. 14 января 1929 года на ежегодном собрании Общества автомобильных инженеров в Детройте первая установка Waukesha была с успехом продемонстрирована публике. Это убедило скептиков, и уже к ноябрю 1931 года была продана первая сотня испытательных двигателей, причём в числе заказчиков оказались такие лидеры мировой промышленности, как Standard Oil Co., Shell Petroleum, FIAT и др. Значительный вклад в совершенствование процедуры детонационных испытаний внёс и первооткрыватель антидетонационного эффекта тетраэтилсвинца Томас Миджлей. Он разработал электромеханический датчик детонации, реагирующий не на звук, а на скачки давления в камере сгорания, получивший в честь своего изобретателя название «игла Миджлея».

В 1940 году пятнадцать американских двигателей Вокеша было закуплено для нужд снабжения Красной Армии. А уже в 1949 году выпущен первый советский образец, дизайн которого полностью копировал заокеанский прототип.

Конечно, с тех пор кое-что изменилось - в блоках регулирования испытательных стендов появилась современная электронная начинка, иглу Миджлея сменили магнитострикционные датчики. Но, как и 90 лет назад, установки для определения октанового числа состоят из тех же составных частей: одноцилиндрового четырёхтактного двигателя с переменной степенью сжатия, тормозящего асинхронного электромотора, системы подготовки воздуха, трёх топливных бачков с карбюраторами без дроссельных заслонок, аппаратуры для измерения детонации и пульта управления. Не изменились и применяемые эталонные топлива - ими остаются изооктан и гептан. Эта не меняющаяся без малого век схема - уникальный пример стойкой приверженности традиции на фоне стремительного развития прочих отраслей техники.

И вот в этом царстве консерватизма, трудоёмкости и высоких цен появляется волшебный чемоданчик, измеряющий октановое число за десять секунд безо всякой громоздкой машинерии! Но что на самом деле он измеряет и стоит ли ему доверять?

Со стендовыми установками всё ясно - они обеспечивают стандартные условия испытания (степень сжатия, частоту оборотов, угол опережения зажигания, уровень топлива в карбюраторе, температуру смеси и проч.), измерение уровня детонации в камере сгорания и его сравнение с детонацией эталонов. Потому они и стоят дорого, и в обслуживании затратны, и требуют времени на одно испытание не менее 40 минут. А вот что измеряет чемоданчик, в котором нет ни мотора, ни датчика детонации? В подавляющем большинстве случаев «октанометр» представляет собой недорогой высокочастотный конденсатор наливного типа, измеряющий отнюдь не октановое число (измерить которое вообще невозможно, так как это условная величина), а импедансную электропроводность бензина, то есть, по сути, его диэлектрическую проницаемость. Какая связь между детонационной стойкостью и диэлектрической проницаемостью? Разумеется, о полноценной функциональной зависимости речь здесь не идёт. А вот некая корреляция с суммарным содержанием высокооктановых ароматических углеводородов наличествует, поскольку их диэлектрическая проницаемость резко выделяется на фоне прочих углеводородов бензина. Она-то, эта корреляция, и вводит в заблуждение - не берусь судить, добросовестное или злонамеренное - разработчиков подобного рода приборов. Как бы то ни было, но измеряют они одно, определяют другое, а результат выдают за третье. Автору в бытность свою начальником заводской лаборатории однажды пришлось разбираться с претензией потребителя, чей «октанометр» занизил результат аж на 20 пунктов, а всё потому, что бензин был более высокого экологического класса, с пониженным содержанием токсичных производных бензола и большей долей сравнительно безвредных, но также высокооктановых изомерных алканов.

Изредка попадаются экспресс-анализаторы более высокого уровня, определяющие октановое число по интегральному химическому составу, устанавливаемому, в свою очередь, по многополосному инфракрасному спектру пропускания бензина в интервале длин волн от 845 до 1045 нм. Данная техника воспроизводит результаты моторных испытаний гораздо лучше импедансных приборов, но и она оказывается бессильна, если заранее не откалибрована под конкретный технологический процесс, по которому бензин был выпущен. В этой-то детали и прячется дьявол. С учётом того, что продвинутая градуировочная модель инфракрасного анализатора имеет десятки степеней свободы, калибровать его можно годами, и для этого требуются всё те же моторные стенды и эталонные топлива. Плюс не следует забывать про неуглеводородные антидетонационные присадки (о них будет сказано ниже), гарантированно сбивающие с толку любой портативный анализатор. В результате спектральные инфракрасные приборы, хоть и получили путёвку в жизнь, но могут быть рекомендованы только для производственных лабораторий по контролю выпуска бензина и уж никак не для инспекций товарной продукции на АЗС. Да и стоит эта импортная техника десятки тысяч долларов. Дешевле, конечно, чем стендовые моторные установки, но тоже не всем по карману. Существуют и другие, с более приемлемым соотношением «цена - качество», методы экспресс-контроля октанового числа, но и им место также исключительно в заводских лабораториях.

Общий вывод по данному вопросу такой. Портативные приборы октановое число не измеряют хотя бы потому, что, в отличие от температуры, давления и прочих физических параметров, октановое число - объект не измерения, а определения, причём с весьма сложной процедурой. Дальнейшее зависит лишь от наличия функциональной связи между октановым числом и фактически измеряемыми параметрами, которая либо отсутствует (импедансные приборы), либо чересчур заковыриста (спектральные). Неспроста ни те, ни другие приборы никогда не признавались в качестве стандартных. Словом, если хотите действовать по закону, добро пожаловать в аккредитованную лабораторию с моторными стендами Waukesha CFR или УИТ-85 и приготовьте минимум 5000 руб. за одно испытание. А все чемоданчики - от лукавого.

Миф пятый: моторное октановое число определяют на двигателе, а исследовательское - безмоторным методом лабораторного анализа.

Да, водители со стажем, помнящие старую номенклатуру марок бензина (А-76, Аи-92), в курсе даже таких тонкостей, как разница между моторным и исследовательским октановыми числами. Но выводы делают неправильные.

Итак, сходу разрушим очередной миф - и моторное, и исследовательское октановые числа определяют на одних и тех же моторных испытательных стендах. Разница лишь в условиях проведения испытаний.

Как видно из таблицы, условия проведения испытаний по моторному методу более жёсткие; этот метод изначально имитировал езду по шоссе. Исследовательский метод в большей степени отражает особенности городской езды - на более низких оборотах, с частыми остановками. Как правило, исследовательское октановое число бензина выше моторного, причём эта разница тем больше, чем больше в нём ароматических углеводородов. По российской номенклатуре ныне указывают лишь исследовательское - оно больше и потому выглядит солиднее, но помните: моторное октановое число 95-го бензина может составлять всего лишь 85. В США на АЗС принято писать так называемое заправочное октановое число - среднеарифметическое моторного и исследовательского. Так что американский 88-й бензин по факту соответствует российскому 92-му, а 91-й - нашему 95-му. Что же касается нелогичных названий, то, как и в случае с самим октановым числом, все претензии к разработавшим их американцам.

Миф шестой: октановое число можно повысить только с помощью специальных присадок.

Этот миф родился в первой половине прошлого века, когда бензин получали преимущественно простой перегонкой (строго говоря, ректификацией, но для неспециалиста особой разницы между двумя этими процессами нет) с последующим добавлением «этиловой жидкости» на основе весьма эффективного (но, к сожалению, крайне ядовитого) металлоорганического антидетонатора - тетраэтилсвинца (ТЭС). Максимальное октановое число, которого удавалось достичь прямой перегонкой, составляло порядка 70-72, наиболее ходовой маркой неэтилированного бензина у нас был А-66, а все бензины с более высоким октановым числом (в особенности авиационные) были этилированные. Позже, с появлением и массовым распространением таких процессов облагораживания, как крекинг и риформинг, появилась возможность получать неэтилированные бензины с октановым числом вплоть до 87. Добавка ТЭС творила с ними поистине чудеса - читатель будет удивлён, но первый бензин с октановым числом 100 был получен в США ещё в 1937 году! Это позволило наладить производство мощных малогабаритных двигателей для самолётов с укороченным взлётом-пробегом и развернуть массовое строительство первых ударных авианосцев.

Годы шли, технологии совершенствовались, и в 1970-1980-х годах пришло осознание того, что санитарный и экологический ущерб, наносимый этилированным бензином, более не компенсируется его эффективностью. В настоящее время ТЭС запрещён практически во всех странах мира (в России разрешён к применению лишь в авиационных бензинах). В 2000-е годы под запрет попали и другие металлорганические антидетонаторы - такие, как циклопентадиенилтрикарбонилмарганец и ферроцен. В употреблении остались лишь так называемые беззольные антидетонаторы в виде простых эфиров и производных анилина. Но их употребляют преимущественно при необходимости «дотянуть» исследовательское октановое число конечного продукта каталитических процессов с 92 до 95-98. Использовать в качестве автомобильного бензина низкооктановую «прямогонку», нашпигованную присадками, сейчас никому не приходит в голову. Их потребуется столь много, что, подняв до нужного уровня один показатель, мы напрочь испортим все остальные.

Несколько слов об октан-бустерах, продающихся в автомагазинах. Моё отношение к ним скептическое - состав непонятен, эффективность сомнительная. Если мотор, что называется, «не тянет» - бустеры не помогут, проблема тут обычно лежит в другой плоскости. Если же при езде действительно проявляются признаки детонации - металлический стук «со звоном», дымный выхлоп, перегрев двигателя, - я бы рекомендовал возить с собой литровую бутылку нефтяного толуола или ксилола (продаются в хозяйственных магазинах в качестве растворителя, моторное октановое число 103), добавляя его в таких случаях в бензобак. Поскольку толуол и ксилол сами по себе являются топливом и в довольно значительных количествах содержатся в любом бензине, это наиболее надёжный и безопасный способ поднять его октановое число на пару-тройку пунктов, чего обычно бывает достаточно для устранения детонационных стуков. А вот экспериментировать с нафталином, как советуют некоторые «умельцы», не стоит. Октановое число у него действительно высокое (еще бы, сразу два бензольных кольца!), но склонность к нагарообразованию ещё выше. Твёрдые высококипящие вещества вообще не лучший вариант для использования в качестве компонентов моторных топлив.

И напоследок. Октановое число - величина, применяющаяся исключительно в отношении топлива для двигателей с искровым зажиганием. Технические условия на дизельное топливо и авиационный керосин такого показателя не содержат, там действуют совершенно иные характеристики воспламеняемости. Что хорошо для бензинового мотора, для дизеля категорически противопоказано. Как говорится - каждому своё.

Сегодня мы поговорим о таком редко обсуждаемом обывателями явлении, как октановое и цетановое числа в топливе. Что это такое в сравнении одно с другим? В чем разница? Где применяется октан, а где цетан? И нужно ли мне это знать?

Октановое число

Начнем с основ, самого простого и распространенного показателя, октанового числа. Он используется в качестве шкалы оценки бензина. Октановое число , как слышали скорее всего многие, является показателем, который характеризует детонационную стойкость бензина, то есть возможность топливу сопротивляться самопроизвольному воспламенению при сжатии .

Что это означает? Бензин с более высоким октановым показателем может быть сжат до более высоких атмосфер (высокого давления), при этом топливовоздушная смесь не воспламенится раньше времени. Иными словами, можно подвести такой вывод под одной из тех цифр, что мы обычной видим на заправках: 92, 95, 98, - это показатель того, насколько вы можете сжать воздушнотопливную смесь прежде чем бензин в ней загорится.

C₈H₁₈ Макет октана

Если происходит преждевременное возгорание топлива, до того, как в заданный промежуток времени проскочит электрическая искра, мы получим так называемую детонацию, крайне вредное для любого мотора явление, с которым инженеры уже давно научились бороться. Как видим, в том числе при помощи топлива.

Кстати, а знали ли вы, что шкала алканов, в которые входят в том числе и октаны, простирается от 0, этот показатель соответствует гептану (C₇H₁₆) до показателя в 100 единиц, что соответствует октану (C₈H₁₈)? Теперь знаете или по крайней мере вспомнили. Вот такое небольшое отступление в химические дебри школьной программы.

Чем еще полезен высокооктановый бензин, кроме отсутствия или минимального присутствия возможности детонации? При высоком показателе компрессии двигатель способен развить больше крутящего момента при одном и том же объеме израсходованного топлива. То есть, двигатель становится эффективным. При этом двигатель позволяет заранее выставить фазы, что даст временной запас при движении поршня в верхнюю мертвую точку и оптимально поджечь смесь.

И наконец, благодаря вышеназванным плюсам, высокооктановое топливо лучше работает в двигателях с турбинами и нагнетателями.

Пару слов о низкооктановом бензине. Все те показатели, только со знаком минус, наблюдаются у топлива с низким октановым числом. Этим обусловлено использования бензинов АИ-80, 92 и в относительно маломощных атмосферных моторах.

Цетановое число

Цетан используется для схожей шкалы оценки, только у дизельного топлива. Характеристика воспламеняемости дизельного топлива, определяющая период задержки горения рабочей смеси.

Что это значит? Это измерение временного промежутка, с того момента, когда топливо впрыскивается в цилиндр и когда это топливо начинает гореть. По науке - промежуток времени, проходящий от впрыска топлива в цилиндр до начала его воспламенения .

Высокое цетановое число дизельного топлива, будет являться измеренным показателем того, насколько топливо быстро воспламеняется после впрыска в цилиндры. И, наоборот, низкое цетановое число, означает, что для поджигания топлива потребуется некоторый временной промежуток.

C 16 H 34 Макет цетана

Измеряется показатель цетана также по шкале углеводородов, крайний левый в которой будет 1-метилнафталин, (C 11 H 10) - отображается 0, 100 - цетан (C 16 H 34).

Преимущество ускоренного возгорания дизельного топлива заключается в том, что двигатель работающий на нем может развивать больше крутящего момента, задержка зажигания будет минимальной, скорость набора оборотов будет выше. Синхронизация работы фаз при помощи работы двигателя на высокоцетановом топливе может проводиться более точно, воспламеняя топливовоздушную смесь в тот момент, когда требуется развить максимальный крутящий момент.

Финальным плюсом высокого показателя цетана можно назвать низкие выбросы углеводородов в атмосферу, поскольку такое топливо сгорает полнее. Но, при этом, как показывают исследования, твердых частиц из выхлопной трубы выбрасывается больше, чем у дизельного топлива с низким показателем цетана.

Как бы то ни было, чем выше цетановое число, тем лучше, это показатель более качественного ДТ.

Надеемся теперь вопросов не возникнет.

Видео взято с YouTube-канала: "Engineering Explained"

Масла